Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 2-May-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | nfesum2.1 | ⊢ Ⅎ 𝑥 𝐴 | |
nfesum2.2 | ⊢ Ⅎ 𝑥 𝐵 | ||
Assertion | nfesum2 | ⊢ Ⅎ 𝑥 Σ* 𝑘 ∈ 𝐴 𝐵 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfesum2.1 | ⊢ Ⅎ 𝑥 𝐴 | |
2 | nfesum2.2 | ⊢ Ⅎ 𝑥 𝐵 | |
3 | df-esum | ⊢ Σ* 𝑘 ∈ 𝐴 𝐵 = ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) | |
4 | nfcv | ⊢ Ⅎ 𝑥 ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) | |
5 | nfcv | ⊢ Ⅎ 𝑥 tsums | |
6 | 1 2 | nfmpt | ⊢ Ⅎ 𝑥 ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) |
7 | 4 5 6 | nfov | ⊢ Ⅎ 𝑥 ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
8 | 7 | nfuni | ⊢ Ⅎ 𝑥 ∪ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) tsums ( 𝑘 ∈ 𝐴 ↦ 𝐵 ) ) |
9 | 3 8 | nfcxfr | ⊢ Ⅎ 𝑥 Σ* 𝑘 ∈ 𝐴 𝐵 |