Metamath Proof Explorer


Theorem nfesum2

Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 2-May-2020)

Ref Expression
Hypotheses nfesum2.1 𝑥 𝐴
nfesum2.2 𝑥 𝐵
Assertion nfesum2 𝑥 Σ* 𝑘𝐴 𝐵

Proof

Step Hyp Ref Expression
1 nfesum2.1 𝑥 𝐴
2 nfesum2.2 𝑥 𝐵
3 df-esum Σ* 𝑘𝐴 𝐵 = ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) )
4 nfcv 𝑥 ( ℝ*𝑠s ( 0 [,] +∞ ) )
5 nfcv 𝑥 tsums
6 1 2 nfmpt 𝑥 ( 𝑘𝐴𝐵 )
7 4 5 6 nfov 𝑥 ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) )
8 7 nfuni 𝑥 ( ( ℝ*𝑠s ( 0 [,] +∞ ) ) tsums ( 𝑘𝐴𝐵 ) )
9 3 8 nfcxfr 𝑥 Σ* 𝑘𝐴 𝐵