Metamath Proof Explorer


Theorem nfesum2

Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 2-May-2020)

Ref Expression
Hypotheses nfesum2.1
|- F/_ x A
nfesum2.2
|- F/_ x B
Assertion nfesum2
|- F/_ x sum* k e. A B

Proof

Step Hyp Ref Expression
1 nfesum2.1
 |-  F/_ x A
2 nfesum2.2
 |-  F/_ x B
3 df-esum
 |-  sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) )
4 nfcv
 |-  F/_ x ( RR*s |`s ( 0 [,] +oo ) )
5 nfcv
 |-  F/_ x tsums
6 1 2 nfmpt
 |-  F/_ x ( k e. A |-> B )
7 4 5 6 nfov
 |-  F/_ x ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) )
8 7 nfuni
 |-  F/_ x U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) )
9 3 8 nfcxfr
 |-  F/_ x sum* k e. A B