Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfesum2.1 | |- F/_ x A |
|
| nfesum2.2 | |- F/_ x B |
||
| Assertion | nfesum2 | |- F/_ x sum* k e. A B |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfesum2.1 | |- F/_ x A |
|
| 2 | nfesum2.2 | |- F/_ x B |
|
| 3 | df-esum | |- sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) |
|
| 4 | nfcv | |- F/_ x ( RR*s |`s ( 0 [,] +oo ) ) |
|
| 5 | nfcv | |- F/_ x tsums |
|
| 6 | 1 2 | nfmpt | |- F/_ x ( k e. A |-> B ) |
| 7 | 4 5 6 | nfov | |- F/_ x ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) |
| 8 | 7 | nfuni | |- F/_ x U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) |
| 9 | 3 8 | nfcxfr | |- F/_ x sum* k e. A B |