Metamath Proof Explorer
Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017)
|
|
Ref |
Expression |
|
Hypotheses |
esumeq12d.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
|
|
esumeq12d.2 |
⊢ ( 𝜑 → 𝐶 = 𝐷 ) |
|
Assertion |
esumeq12d |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐶 = Σ* 𝑘 ∈ 𝐵 𝐷 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
esumeq12d.1 |
⊢ ( 𝜑 → 𝐴 = 𝐵 ) |
2 |
|
esumeq12d.2 |
⊢ ( 𝜑 → 𝐶 = 𝐷 ) |
3 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 = 𝐷 ) |
4 |
1 3
|
esumeq12dva |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐶 = Σ* 𝑘 ∈ 𝐵 𝐷 ) |