Metamath Proof Explorer


Theorem esumeq12d

Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017)

Ref Expression
Hypotheses esumeq12d.1 ( 𝜑𝐴 = 𝐵 )
esumeq12d.2 ( 𝜑𝐶 = 𝐷 )
Assertion esumeq12d ( 𝜑 → Σ* 𝑘𝐴 𝐶 = Σ* 𝑘𝐵 𝐷 )

Proof

Step Hyp Ref Expression
1 esumeq12d.1 ( 𝜑𝐴 = 𝐵 )
2 esumeq12d.2 ( 𝜑𝐶 = 𝐷 )
3 2 adantr ( ( 𝜑𝑘𝐴 ) → 𝐶 = 𝐷 )
4 1 3 esumeq12dva ( 𝜑 → Σ* 𝑘𝐴 𝐶 = Σ* 𝑘𝐵 𝐷 )