Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | esumeq12d.1 | |- ( ph -> A = B ) |
|
| esumeq12d.2 | |- ( ph -> C = D ) |
||
| Assertion | esumeq12d | |- ( ph -> sum* k e. A C = sum* k e. B D ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | esumeq12d.1 | |- ( ph -> A = B ) |
|
| 2 | esumeq12d.2 | |- ( ph -> C = D ) |
|
| 3 | 2 | adantr | |- ( ( ph /\ k e. A ) -> C = D ) |
| 4 | 1 3 | esumeq12dva | |- ( ph -> sum* k e. A C = sum* k e. B D ) |