Metamath Proof Explorer


Theorem esumeq12d

Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017)

Ref Expression
Hypotheses esumeq12d.1
|- ( ph -> A = B )
esumeq12d.2
|- ( ph -> C = D )
Assertion esumeq12d
|- ( ph -> sum* k e. A C = sum* k e. B D )

Proof

Step Hyp Ref Expression
1 esumeq12d.1
 |-  ( ph -> A = B )
2 esumeq12d.2
 |-  ( ph -> C = D )
3 2 adantr
 |-  ( ( ph /\ k e. A ) -> C = D )
4 1 3 esumeq12dva
 |-  ( ph -> sum* k e. A C = sum* k e. B D )