Metamath Proof Explorer


Theorem esumeq12d

Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017)

Ref Expression
Hypotheses esumeq12d.1 φ A = B
esumeq12d.2 φ C = D
Assertion esumeq12d φ * k A C = * k B D

Proof

Step Hyp Ref Expression
1 esumeq12d.1 φ A = B
2 esumeq12d.2 φ C = D
3 2 adantr φ k A C = D
4 1 3 esumeq12dva φ * k A C = * k B D