Metamath Proof Explorer


Theorem esumeq12dva

Description: Equality deduction for extended sum. (Contributed by Thierry Arnoux, 18-Feb-2017) (Revised by Thierry Arnoux, 29-Jun-2017)

Ref Expression
Hypotheses esumeq12dva.1 φ A = B
esumeq12dva.2 φ k A C = D
Assertion esumeq12dva φ * k A C = * k B D

Proof

Step Hyp Ref Expression
1 esumeq12dva.1 φ A = B
2 esumeq12dva.2 φ k A C = D
3 nfv k φ
4 3 1 2 esumeq12dvaf φ * k A C = * k B D