Metamath Proof Explorer


Theorem sbcimdv

Description: Substitution analogue of Theorem 19.20 of Margaris p. 90 ( alim ). (Contributed by NM, 11-Nov-2005) (Revised by NM, 17-Aug-2018) (Proof shortened by JJ, 7-Jul-2021) Reduce axiom usage. (Revised by Gino Giotto, 12-Oct-2024)

Ref Expression
Hypothesis sbcimdv.1 ( 𝜑 → ( 𝜓𝜒 ) )
Assertion sbcimdv ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓[ 𝐴 / 𝑥 ] 𝜒 ) )

Proof

Step Hyp Ref Expression
1 sbcimdv.1 ( 𝜑 → ( 𝜓𝜒 ) )
2 df-sbc ( [ 𝐴 / 𝑥 ] 𝜓𝐴 ∈ { 𝑥𝜓 } )
3 dfclel ( 𝐴 ∈ { 𝑥𝜓 } ↔ ∃ 𝑦 ( 𝑦 = 𝐴𝑦 ∈ { 𝑥𝜓 } ) )
4 df-clab ( 𝑦 ∈ { 𝑥𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 )
5 4 anbi2i ( ( 𝑦 = 𝐴𝑦 ∈ { 𝑥𝜓 } ) ↔ ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) )
6 5 exbii ( ∃ 𝑦 ( 𝑦 = 𝐴𝑦 ∈ { 𝑥𝜓 } ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) )
7 2 3 6 3bitri ( [ 𝐴 / 𝑥 ] 𝜓 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) )
8 7 biimpi ( [ 𝐴 / 𝑥 ] 𝜓 → ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) )
9 1 sbimdv ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) )
10 9 anim2d ( 𝜑 → ( ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) )
11 10 eximdv ( 𝜑 → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) )
12 df-sbc ( [ 𝐴 / 𝑥 ] 𝜒𝐴 ∈ { 𝑥𝜒 } )
13 dfclel ( 𝐴 ∈ { 𝑥𝜒 } ↔ ∃ 𝑦 ( 𝑦 = 𝐴𝑦 ∈ { 𝑥𝜒 } ) )
14 df-clab ( 𝑦 ∈ { 𝑥𝜒 } ↔ [ 𝑦 / 𝑥 ] 𝜒 )
15 14 anbi2i ( ( 𝑦 = 𝐴𝑦 ∈ { 𝑥𝜒 } ) ↔ ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) )
16 15 exbii ( ∃ 𝑦 ( 𝑦 = 𝐴𝑦 ∈ { 𝑥𝜒 } ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) )
17 12 13 16 3bitrri ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ↔ [ 𝐴 / 𝑥 ] 𝜒 )
18 17 biimpi ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) → [ 𝐴 / 𝑥 ] 𝜒 )
19 8 11 18 syl56 ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓[ 𝐴 / 𝑥 ] 𝜒 ) )