| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcimdv.1 |
⊢ ( 𝜑 → ( 𝜓 → 𝜒 ) ) |
| 2 |
|
df-sbc |
⊢ ( [ 𝐴 / 𝑥 ] 𝜓 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜓 } ) |
| 3 |
|
dfclel |
⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜓 } ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ) |
| 4 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 ) |
| 5 |
4
|
anbi2i |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ↔ ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 6 |
5
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜓 } ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 7 |
2 3 6
|
3bitri |
⊢ ( [ 𝐴 / 𝑥 ] 𝜓 ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 8 |
7
|
biimpi |
⊢ ( [ 𝐴 / 𝑥 ] 𝜓 → ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) ) |
| 9 |
1
|
sbimdv |
⊢ ( 𝜑 → ( [ 𝑦 / 𝑥 ] 𝜓 → [ 𝑦 / 𝑥 ] 𝜒 ) ) |
| 10 |
9
|
anim2d |
⊢ ( 𝜑 → ( ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) ) |
| 11 |
10
|
eximdv |
⊢ ( 𝜑 → ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) → ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) ) |
| 12 |
|
df-sbc |
⊢ ( [ 𝐴 / 𝑥 ] 𝜒 ↔ 𝐴 ∈ { 𝑥 ∣ 𝜒 } ) |
| 13 |
|
dfclel |
⊢ ( 𝐴 ∈ { 𝑥 ∣ 𝜒 } ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜒 } ) ) |
| 14 |
|
df-clab |
⊢ ( 𝑦 ∈ { 𝑥 ∣ 𝜒 } ↔ [ 𝑦 / 𝑥 ] 𝜒 ) |
| 15 |
14
|
anbi2i |
⊢ ( ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜒 } ) ↔ ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) |
| 16 |
15
|
exbii |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ 𝑦 ∈ { 𝑥 ∣ 𝜒 } ) ↔ ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ) |
| 17 |
12 13 16
|
3bitrri |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) ↔ [ 𝐴 / 𝑥 ] 𝜒 ) |
| 18 |
17
|
biimpi |
⊢ ( ∃ 𝑦 ( 𝑦 = 𝐴 ∧ [ 𝑦 / 𝑥 ] 𝜒 ) → [ 𝐴 / 𝑥 ] 𝜒 ) |
| 19 |
8 11 18
|
syl56 |
⊢ ( 𝜑 → ( [ 𝐴 / 𝑥 ] 𝜓 → [ 𝐴 / 𝑥 ] 𝜒 ) ) |