| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sbcimdv.1 |
|- ( ph -> ( ps -> ch ) ) |
| 2 |
|
df-sbc |
|- ( [. A / x ]. ps <-> A e. { x | ps } ) |
| 3 |
|
dfclel |
|- ( A e. { x | ps } <-> E. y ( y = A /\ y e. { x | ps } ) ) |
| 4 |
|
df-clab |
|- ( y e. { x | ps } <-> [ y / x ] ps ) |
| 5 |
4
|
anbi2i |
|- ( ( y = A /\ y e. { x | ps } ) <-> ( y = A /\ [ y / x ] ps ) ) |
| 6 |
5
|
exbii |
|- ( E. y ( y = A /\ y e. { x | ps } ) <-> E. y ( y = A /\ [ y / x ] ps ) ) |
| 7 |
2 3 6
|
3bitri |
|- ( [. A / x ]. ps <-> E. y ( y = A /\ [ y / x ] ps ) ) |
| 8 |
7
|
biimpi |
|- ( [. A / x ]. ps -> E. y ( y = A /\ [ y / x ] ps ) ) |
| 9 |
1
|
sbimdv |
|- ( ph -> ( [ y / x ] ps -> [ y / x ] ch ) ) |
| 10 |
9
|
anim2d |
|- ( ph -> ( ( y = A /\ [ y / x ] ps ) -> ( y = A /\ [ y / x ] ch ) ) ) |
| 11 |
10
|
eximdv |
|- ( ph -> ( E. y ( y = A /\ [ y / x ] ps ) -> E. y ( y = A /\ [ y / x ] ch ) ) ) |
| 12 |
|
df-sbc |
|- ( [. A / x ]. ch <-> A e. { x | ch } ) |
| 13 |
|
dfclel |
|- ( A e. { x | ch } <-> E. y ( y = A /\ y e. { x | ch } ) ) |
| 14 |
|
df-clab |
|- ( y e. { x | ch } <-> [ y / x ] ch ) |
| 15 |
14
|
anbi2i |
|- ( ( y = A /\ y e. { x | ch } ) <-> ( y = A /\ [ y / x ] ch ) ) |
| 16 |
15
|
exbii |
|- ( E. y ( y = A /\ y e. { x | ch } ) <-> E. y ( y = A /\ [ y / x ] ch ) ) |
| 17 |
12 13 16
|
3bitrri |
|- ( E. y ( y = A /\ [ y / x ] ch ) <-> [. A / x ]. ch ) |
| 18 |
17
|
biimpi |
|- ( E. y ( y = A /\ [ y / x ] ch ) -> [. A / x ]. ch ) |
| 19 |
8 11 18
|
syl56 |
|- ( ph -> ( [. A / x ]. ps -> [. A / x ]. ch ) ) |