| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esum2d.0 |
⊢ Ⅎ 𝑘 𝐹 |
| 2 |
|
esum2d.1 |
⊢ ( 𝑧 = 〈 𝑗 , 𝑘 〉 → 𝐹 = 𝐶 ) |
| 3 |
|
esum2d.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
esum2d.3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → 𝐵 ∈ 𝑊 ) |
| 5 |
|
esum2d.4 |
⊢ ( ( 𝜑 ∧ ( 𝑗 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 6 |
|
xrltso |
⊢ < Or ℝ* |
| 7 |
6
|
a1i |
⊢ ( 𝜑 → < Or ℝ* ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑐 𝜑 |
| 9 |
|
nfcv |
⊢ Ⅎ 𝑐 𝑠 |
| 10 |
|
nfmpt1 |
⊢ Ⅎ 𝑐 ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 11 |
10
|
nfrn |
⊢ Ⅎ 𝑐 ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 12 |
9 11
|
nfel |
⊢ Ⅎ 𝑐 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 13 |
8 12
|
nfan |
⊢ Ⅎ 𝑐 ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) |
| 14 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 15 |
|
xrge0base |
⊢ ( 0 [,] +∞ ) = ( Base ‘ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ) |
| 16 |
|
xrge0cmn |
⊢ ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd |
| 17 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd ) |
| 18 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) |
| 19 |
18
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → 𝑐 ∈ Fin ) |
| 20 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑧 ∈ 𝑐 ) → 𝜑 ) |
| 21 |
18
|
elin1d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → 𝑐 ∈ 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑧 ∈ 𝑐 ) → 𝑐 ∈ 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 23 |
|
vex |
⊢ 𝑐 ∈ V |
| 24 |
23
|
elpw |
⊢ ( 𝑐 ∈ 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ 𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 25 |
22 24
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑧 ∈ 𝑐 ) → 𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 26 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑧 ∈ 𝑐 ) → 𝑧 ∈ 𝑐 ) |
| 27 |
25 26
|
sseldd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑧 ∈ 𝑐 ) → 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 28 |
|
nfv |
⊢ Ⅎ 𝑗 𝜑 |
| 29 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑧 |
| 30 |
|
nfiu1 |
⊢ Ⅎ 𝑗 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) |
| 31 |
29 30
|
nfel |
⊢ Ⅎ 𝑗 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) |
| 32 |
28 31
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 33 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) |
| 34 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 0 [,] +∞ ) |
| 35 |
1 34
|
nfel |
⊢ Ⅎ 𝑘 𝐹 ∈ ( 0 [,] +∞ ) |
| 36 |
2
|
adantl |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) → 𝐹 = 𝐶 ) |
| 37 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) → 𝜑 ) |
| 38 |
|
simp-4r |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) → 𝑗 ∈ 𝐴 ) |
| 39 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) → 𝑘 ∈ 𝐵 ) |
| 40 |
37 38 39 5
|
syl12anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 41 |
36 40
|
eqeltrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 ∈ 𝐵 ) ∧ 𝑧 = 〈 𝑗 , 𝑘 〉 ) → 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 42 |
|
elsnxp |
⊢ ( 𝑗 ∈ 𝐴 → ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑘 ∈ 𝐵 𝑧 = 〈 𝑗 , 𝑘 〉 ) ) |
| 43 |
42
|
biimpa |
⊢ ( ( 𝑗 ∈ 𝐴 ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ∃ 𝑘 ∈ 𝐵 𝑧 = 〈 𝑗 , 𝑘 〉 ) |
| 44 |
43
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ∃ 𝑘 ∈ 𝐵 𝑧 = 〈 𝑗 , 𝑘 〉 ) |
| 45 |
33 35 41 44
|
r19.29af2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 46 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) → 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 47 |
|
eliun |
⊢ ( 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗 ∈ 𝐴 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) |
| 48 |
46 47
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) → ∃ 𝑗 ∈ 𝐴 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) |
| 49 |
32 45 48
|
r19.29af |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) → 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 50 |
20 27 49
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑧 ∈ 𝑐 ) → 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 51 |
50
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ∀ 𝑧 ∈ 𝑐 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 52 |
15 17 19 51
|
gsummptcl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ∈ ( 0 [,] +∞ ) ) |
| 53 |
14 52
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ∈ ℝ* ) |
| 54 |
53
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ∈ ℝ* ) |
| 55 |
|
eqid |
⊢ ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) = ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 56 |
55
|
rnmptss |
⊢ ( ∀ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ∈ ℝ* → ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ⊆ ℝ* ) |
| 57 |
54 56
|
syl |
⊢ ( 𝜑 → ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ⊆ ℝ* ) |
| 58 |
57
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ⊆ ℝ* ) |
| 59 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) |
| 60 |
58 59
|
sseldd |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → 𝑠 ∈ ℝ* ) |
| 61 |
|
vsnex |
⊢ { 𝑗 } ∈ V |
| 62 |
|
xpexg |
⊢ ( ( { 𝑗 } ∈ V ∧ 𝐵 ∈ 𝑊 ) → ( { 𝑗 } × 𝐵 ) ∈ V ) |
| 63 |
61 4 62
|
sylancr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( { 𝑗 } × 𝐵 ) ∈ V ) |
| 64 |
63
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∈ V ) |
| 65 |
|
iunexg |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∈ V ) → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∈ V ) |
| 66 |
3 64 65
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∈ V ) |
| 67 |
49
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 68 |
|
nfcv |
⊢ Ⅎ 𝑧 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) |
| 69 |
68
|
esumcl |
⊢ ( ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∈ V ∧ ∀ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 70 |
66 67 69
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 71 |
14 70
|
sselid |
⊢ ( 𝜑 → Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ∈ ℝ* ) |
| 72 |
71
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ∈ ℝ* ) |
| 73 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 74 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) |
| 75 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑐 |
| 76 |
74 75 19 50
|
esumgsum |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → Σ* 𝑧 ∈ 𝑐 𝐹 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 77 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∈ V ) |
| 78 |
49
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) → 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 79 |
21 24
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → 𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 80 |
74 77 78 79
|
esummono |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → Σ* 𝑧 ∈ 𝑐 𝐹 ≤ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 81 |
76 80
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ≤ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 82 |
81
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ≤ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 83 |
82
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ≤ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 84 |
73 83
|
eqbrtrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → 𝑠 ≤ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 85 |
|
xrlenlt |
⊢ ( ( 𝑠 ∈ ℝ* ∧ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ∈ ℝ* ) → ( 𝑠 ≤ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ↔ ¬ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 < 𝑠 ) ) |
| 86 |
85
|
biimpa |
⊢ ( ( ( 𝑠 ∈ ℝ* ∧ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ∈ ℝ* ) ∧ 𝑠 ≤ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) → ¬ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 < 𝑠 ) |
| 87 |
60 72 84 86
|
syl21anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → ¬ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 < 𝑠 ) |
| 88 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) → 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) |
| 89 |
|
ovex |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ∈ V |
| 90 |
55 89
|
elrnmpti |
⊢ ( 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ↔ ∃ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 91 |
88 90
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) → ∃ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 92 |
13 87 91
|
r19.29af |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) → ¬ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 < 𝑠 ) |
| 93 |
92
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ¬ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 < 𝑠 ) |
| 94 |
|
nfv |
⊢ Ⅎ 𝑐 ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 95 |
|
nfv |
⊢ Ⅎ 𝑐 𝑠 < 𝑡 |
| 96 |
11 95
|
nfrexw |
⊢ Ⅎ 𝑐 ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 |
| 97 |
76
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → Σ* 𝑧 ∈ 𝑐 𝐹 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 98 |
97
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → Σ* 𝑧 ∈ 𝑐 𝐹 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 99 |
98
|
adantr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 < Σ* 𝑧 ∈ 𝑐 𝐹 ) → Σ* 𝑧 ∈ 𝑐 𝐹 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 100 |
|
simplr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 < Σ* 𝑧 ∈ 𝑐 𝐹 ) → 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) |
| 101 |
89
|
a1i |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 < Σ* 𝑧 ∈ 𝑐 𝐹 ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ∈ V ) |
| 102 |
55
|
elrnmpt1 |
⊢ ( ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ∧ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ∈ V ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) |
| 103 |
100 101 102
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 < Σ* 𝑧 ∈ 𝑐 𝐹 ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) |
| 104 |
99 103
|
eqeltrd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 < Σ* 𝑧 ∈ 𝑐 𝐹 ) → Σ* 𝑧 ∈ 𝑐 𝐹 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) |
| 105 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 < Σ* 𝑧 ∈ 𝑐 𝐹 ) ∧ 𝑡 = Σ* 𝑧 ∈ 𝑐 𝐹 ) → 𝑡 = Σ* 𝑧 ∈ 𝑐 𝐹 ) |
| 106 |
105
|
breq2d |
⊢ ( ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 < Σ* 𝑧 ∈ 𝑐 𝐹 ) ∧ 𝑡 = Σ* 𝑧 ∈ 𝑐 𝐹 ) → ( 𝑠 < 𝑡 ↔ 𝑠 < Σ* 𝑧 ∈ 𝑐 𝐹 ) ) |
| 107 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 < Σ* 𝑧 ∈ 𝑐 𝐹 ) → 𝑠 < Σ* 𝑧 ∈ 𝑐 𝐹 ) |
| 108 |
104 106 107
|
rspcedvd |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑠 < Σ* 𝑧 ∈ 𝑐 𝐹 ) → ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ) |
| 109 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝜑 ∧ 𝑠 ∈ ℝ* ) |
| 110 |
|
nfcv |
⊢ Ⅎ 𝑧 𝑠 |
| 111 |
|
nfcv |
⊢ Ⅎ 𝑧 < |
| 112 |
68
|
nfesum1 |
⊢ Ⅎ 𝑧 Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 |
| 113 |
110 111 112
|
nfbr |
⊢ Ⅎ 𝑧 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 |
| 114 |
109 113
|
nfan |
⊢ Ⅎ 𝑧 ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 115 |
66
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∈ V ) |
| 116 |
49
|
3ad2antr3 |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) ) → 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 117 |
116
|
3anassrs |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) → 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 118 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) → 𝑠 ∈ ℝ* ) |
| 119 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) → 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 120 |
114 115 117 118 119
|
esumlub |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) → ∃ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) 𝑠 < Σ* 𝑧 ∈ 𝑐 𝐹 ) |
| 121 |
94 96 108 120
|
r19.29af2 |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) → ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ) |
| 122 |
121
|
ex |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) → ( 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 → ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ) ) |
| 123 |
122
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑠 ∈ ℝ* ( 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 → ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ) ) |
| 124 |
93 123
|
jca |
⊢ ( 𝜑 → ( ∀ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ¬ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 < 𝑠 ∧ ∀ 𝑠 ∈ ℝ* ( 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 → ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ) ) ) |
| 125 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑟 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) → 𝑟 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 126 |
125
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑟 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) → ( 𝑟 < 𝑠 ↔ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 < 𝑠 ) ) |
| 127 |
126
|
notbid |
⊢ ( ( 𝜑 ∧ 𝑟 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) → ( ¬ 𝑟 < 𝑠 ↔ ¬ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 < 𝑠 ) ) |
| 128 |
127
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑟 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) → ( ∀ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ¬ 𝑟 < 𝑠 ↔ ∀ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ¬ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 < 𝑠 ) ) |
| 129 |
125
|
breq2d |
⊢ ( ( 𝜑 ∧ 𝑟 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) → ( 𝑠 < 𝑟 ↔ 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) ) |
| 130 |
129
|
imbi1d |
⊢ ( ( 𝜑 ∧ 𝑟 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) → ( ( 𝑠 < 𝑟 → ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ) ↔ ( 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 → ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ) ) ) |
| 131 |
130
|
ralbidv |
⊢ ( ( 𝜑 ∧ 𝑟 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) → ( ∀ 𝑠 ∈ ℝ* ( 𝑠 < 𝑟 → ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ) ↔ ∀ 𝑠 ∈ ℝ* ( 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 → ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ) ) ) |
| 132 |
128 131
|
anbi12d |
⊢ ( ( 𝜑 ∧ 𝑟 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) → ( ( ∀ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ¬ 𝑟 < 𝑠 ∧ ∀ 𝑠 ∈ ℝ* ( 𝑠 < 𝑟 → ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ) ) ↔ ( ∀ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ¬ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 < 𝑠 ∧ ∀ 𝑠 ∈ ℝ* ( 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 → ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ) ) ) ) |
| 133 |
71 132
|
rspcedv |
⊢ ( 𝜑 → ( ( ∀ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ¬ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 < 𝑠 ∧ ∀ 𝑠 ∈ ℝ* ( 𝑠 < Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 → ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ) ) → ∃ 𝑟 ∈ ℝ* ( ∀ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ¬ 𝑟 < 𝑠 ∧ ∀ 𝑠 ∈ ℝ* ( 𝑠 < 𝑟 → ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ) ) ) ) |
| 134 |
124 133
|
mpd |
⊢ ( 𝜑 → ∃ 𝑟 ∈ ℝ* ( ∀ 𝑠 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ¬ 𝑟 < 𝑠 ∧ ∀ 𝑠 ∈ ℝ* ( 𝑠 < 𝑟 → ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ) ) ) |
| 135 |
7 134
|
supcl |
⊢ ( 𝜑 → sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ∈ ℝ* ) |
| 136 |
|
nfv |
⊢ Ⅎ 𝑎 𝜑 |
| 137 |
|
nfcv |
⊢ Ⅎ 𝑎 𝑠 |
| 138 |
|
nfmpt1 |
⊢ Ⅎ 𝑎 ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 139 |
138
|
nfrn |
⊢ Ⅎ 𝑎 ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 140 |
137 139
|
nfel |
⊢ Ⅎ 𝑎 𝑠 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 141 |
136 140
|
nfan |
⊢ Ⅎ 𝑎 ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
| 142 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 143 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑗 ∈ 𝑎 ) → 𝜑 ) |
| 144 |
142
|
elin1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑎 ∈ 𝒫 𝐴 ) |
| 145 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝐴 → 𝑎 ⊆ 𝐴 ) |
| 146 |
144 145
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑎 ⊆ 𝐴 ) |
| 147 |
146
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑗 ∈ 𝑎 ) → 𝑗 ∈ 𝐴 ) |
| 148 |
143 147 4
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑗 ∈ 𝑎 ) → 𝐵 ∈ 𝑊 ) |
| 149 |
143
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑗 ∈ 𝑎 ∧ 𝑘 ∈ 𝐵 ) ) → 𝜑 ) |
| 150 |
147
|
adantrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑗 ∈ 𝑎 ∧ 𝑘 ∈ 𝐵 ) ) → 𝑗 ∈ 𝐴 ) |
| 151 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑗 ∈ 𝑎 ∧ 𝑘 ∈ 𝐵 ) ) → 𝑘 ∈ 𝐵 ) |
| 152 |
149 150 151 5
|
syl12anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ ( 𝑗 ∈ 𝑎 ∧ 𝑘 ∈ 𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 153 |
142
|
elin2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑎 ∈ Fin ) |
| 154 |
1 2 142 148 152 153
|
esum2dlem |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ* 𝑗 ∈ 𝑎 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 155 |
|
nfv |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 156 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑎 |
| 157 |
5
|
anassrs |
⊢ ( ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 158 |
157
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 159 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐵 |
| 160 |
159
|
esumcl |
⊢ ( ( 𝐵 ∈ 𝑊 ∧ ∀ 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 161 |
4 158 160
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → Σ* 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 162 |
143 147 161
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑗 ∈ 𝑎 ) → Σ* 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 163 |
155 156 153 162
|
esumgsum |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ* 𝑗 ∈ 𝑎 Σ* 𝑘 ∈ 𝐵 𝐶 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 164 |
154 163
|
eqtr3d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 165 |
|
nfv |
⊢ Ⅎ 𝑧 ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 166 |
66
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∈ V ) |
| 167 |
49
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) → 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 168 |
|
iunss1 |
⊢ ( 𝑎 ⊆ 𝐴 → ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 169 |
146 168
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 170 |
165 166 167 169
|
esummono |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝑎 ( { 𝑗 } × 𝐵 ) 𝐹 ≤ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 171 |
164 170
|
eqbrtrrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ≤ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) |
| 172 |
16
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd ) |
| 173 |
162
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ∀ 𝑗 ∈ 𝑎 Σ* 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 174 |
15 172 153 173
|
gsummptcl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ∈ ( 0 [,] +∞ ) ) |
| 175 |
14 174
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ∈ ℝ* ) |
| 176 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ∈ ℝ* ) |
| 177 |
|
xrlenlt |
⊢ ( ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ∈ ℝ* ∧ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ∈ ℝ* ) → ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ≤ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ↔ ¬ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
| 178 |
175 176 177
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ≤ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ↔ ¬ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
| 179 |
171 178
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ¬ Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 180 |
|
nfv |
⊢ Ⅎ 𝑧 𝜑 |
| 181 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 182 |
180 68 66 49 181
|
esumval |
⊢ ( 𝜑 → Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 = sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) |
| 183 |
182
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 = sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) |
| 184 |
183
|
breq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ↔ sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
| 185 |
179 184
|
mtbid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ¬ sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 186 |
185
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ¬ sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 187 |
186
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) → ¬ sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 188 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) → 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 189 |
188
|
breq2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) → ( sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) < 𝑠 ↔ sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
| 190 |
189
|
notbid |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) → ( ¬ sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) < 𝑠 ↔ ¬ sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
| 191 |
187 190
|
mpbird |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) ∧ 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) → ¬ sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) < 𝑠 ) |
| 192 |
|
eqid |
⊢ ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) = ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 193 |
|
ovex |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ∈ V |
| 194 |
192 193
|
elrnmpti |
⊢ ( 𝑠 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ↔ ∃ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 195 |
194
|
biimpi |
⊢ ( 𝑠 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) → ∃ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 196 |
195
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) → ∃ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) 𝑠 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 197 |
141 191 196
|
r19.29af |
⊢ ( ( 𝜑 ∧ 𝑠 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) → ¬ sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) < 𝑠 ) |
| 198 |
9
|
nfel1 |
⊢ Ⅎ 𝑐 𝑠 ∈ ℝ* |
| 199 |
|
nfcv |
⊢ Ⅎ 𝑐 < |
| 200 |
|
nfcv |
⊢ Ⅎ 𝑐 ℝ* |
| 201 |
11 200 199
|
nfsup |
⊢ Ⅎ 𝑐 sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) |
| 202 |
9 199 201
|
nfbr |
⊢ Ⅎ 𝑐 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) |
| 203 |
198 202
|
nfan |
⊢ Ⅎ 𝑐 ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) |
| 204 |
8 203
|
nfan |
⊢ Ⅎ 𝑐 ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) |
| 205 |
|
nfcv |
⊢ Ⅎ 𝑐 𝑢 |
| 206 |
205 11
|
nfel |
⊢ Ⅎ 𝑐 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 207 |
204 206
|
nfan |
⊢ Ⅎ 𝑐 ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) |
| 208 |
|
nfv |
⊢ Ⅎ 𝑐 𝑠 < 𝑢 |
| 209 |
207 208
|
nfan |
⊢ Ⅎ 𝑐 ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑠 < 𝑢 ) |
| 210 |
|
simp-5l |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑠 < 𝑢 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → 𝜑 ) |
| 211 |
|
simpr1l |
⊢ ( ( 𝜑 ∧ ( ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ ( 𝑠 < 𝑢 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ∧ 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ) → 𝑠 ∈ ℝ* ) |
| 212 |
211
|
3anassrs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ ( 𝑠 < 𝑢 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ∧ 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) → 𝑠 ∈ ℝ* ) |
| 213 |
212
|
3anassrs |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑠 < 𝑢 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → 𝑠 ∈ ℝ* ) |
| 214 |
210 213
|
jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑠 < 𝑢 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ) |
| 215 |
|
simpr1r |
⊢ ( ( 𝜑 ∧ ( ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ ( 𝑠 < 𝑢 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ∧ 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ) → 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) |
| 216 |
215
|
3anassrs |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ ( 𝑠 < 𝑢 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ∧ 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) → 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) |
| 217 |
216
|
3anassrs |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑠 < 𝑢 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) |
| 218 |
214 217
|
jca |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑠 < 𝑢 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) |
| 219 |
|
simpllr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑠 < 𝑢 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → 𝑠 < 𝑢 ) |
| 220 |
|
simpr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑠 < 𝑢 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 221 |
219 220
|
breqtrd |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑠 < 𝑢 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 222 |
|
simplr |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑠 < 𝑢 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) |
| 223 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) |
| 224 |
223
|
elin1d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → 𝑐 ∈ 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 225 |
|
elpwi |
⊢ ( 𝑐 ∈ 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) → 𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 226 |
|
dmss |
⊢ ( 𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) → dom 𝑐 ⊆ dom ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 227 |
|
dmiun |
⊢ dom ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) = ∪ 𝑗 ∈ 𝐴 dom ( { 𝑗 } × 𝐵 ) |
| 228 |
226 227
|
sseqtrdi |
⊢ ( 𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) → dom 𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 dom ( { 𝑗 } × 𝐵 ) ) |
| 229 |
|
dmxpss |
⊢ dom ( { 𝑗 } × 𝐵 ) ⊆ { 𝑗 } |
| 230 |
229
|
a1i |
⊢ ( 𝑗 ∈ 𝐴 → dom ( { 𝑗 } × 𝐵 ) ⊆ { 𝑗 } ) |
| 231 |
|
snssi |
⊢ ( 𝑗 ∈ 𝐴 → { 𝑗 } ⊆ 𝐴 ) |
| 232 |
230 231
|
sstrd |
⊢ ( 𝑗 ∈ 𝐴 → dom ( { 𝑗 } × 𝐵 ) ⊆ 𝐴 ) |
| 233 |
232
|
rgen |
⊢ ∀ 𝑗 ∈ 𝐴 dom ( { 𝑗 } × 𝐵 ) ⊆ 𝐴 |
| 234 |
|
iunss |
⊢ ( ∪ 𝑗 ∈ 𝐴 dom ( { 𝑗 } × 𝐵 ) ⊆ 𝐴 ↔ ∀ 𝑗 ∈ 𝐴 dom ( { 𝑗 } × 𝐵 ) ⊆ 𝐴 ) |
| 235 |
233 234
|
mpbir |
⊢ ∪ 𝑗 ∈ 𝐴 dom ( { 𝑗 } × 𝐵 ) ⊆ 𝐴 |
| 236 |
228 235
|
sstrdi |
⊢ ( 𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) → dom 𝑐 ⊆ 𝐴 ) |
| 237 |
23
|
dmex |
⊢ dom 𝑐 ∈ V |
| 238 |
237
|
elpw |
⊢ ( dom 𝑐 ∈ 𝒫 𝐴 ↔ dom 𝑐 ⊆ 𝐴 ) |
| 239 |
236 238
|
sylibr |
⊢ ( 𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) → dom 𝑐 ∈ 𝒫 𝐴 ) |
| 240 |
224 225 239
|
3syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → dom 𝑐 ∈ 𝒫 𝐴 ) |
| 241 |
223
|
elin2d |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → 𝑐 ∈ Fin ) |
| 242 |
|
dmfi |
⊢ ( 𝑐 ∈ Fin → dom 𝑐 ∈ Fin ) |
| 243 |
241 242
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → dom 𝑐 ∈ Fin ) |
| 244 |
240 243
|
elind |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → dom 𝑐 ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 245 |
|
ovex |
⊢ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ∈ V |
| 246 |
245
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ∈ V ) |
| 247 |
|
mpteq1 |
⊢ ( 𝑎 = dom 𝑐 → ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) = ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) |
| 248 |
247
|
oveq2d |
⊢ ( 𝑎 = dom 𝑐 → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 249 |
192 248
|
elrnmpt1s |
⊢ ( ( dom 𝑐 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ∈ V ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
| 250 |
244 246 249
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
| 251 |
|
simpr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑡 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) → 𝑡 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 252 |
251
|
breq2d |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑡 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) → ( 𝑠 < 𝑡 ↔ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) ) |
| 253 |
|
simpllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → 𝑠 ∈ ℝ* ) |
| 254 |
16
|
a1i |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) ∈ CMnd ) |
| 255 |
|
nfcv |
⊢ Ⅎ 𝑧 ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) |
| 256 |
|
nfcv |
⊢ Ⅎ 𝑧 Σg |
| 257 |
|
nfmpt1 |
⊢ Ⅎ 𝑧 ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) |
| 258 |
255 256 257
|
nfov |
⊢ Ⅎ 𝑧 ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) |
| 259 |
110 111 258
|
nfbr |
⊢ Ⅎ 𝑧 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) |
| 260 |
109 259
|
nfan |
⊢ Ⅎ 𝑧 ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 261 |
|
nfv |
⊢ Ⅎ 𝑧 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) |
| 262 |
260 261
|
nfan |
⊢ Ⅎ 𝑧 ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) |
| 263 |
|
simp-4l |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑧 ∈ 𝑐 ) → 𝜑 ) |
| 264 |
224 225
|
syl |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → 𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 265 |
264
|
sselda |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑧 ∈ 𝑐 ) → 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 266 |
263 265 49
|
syl2anc |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑧 ∈ 𝑐 ) → 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 267 |
266
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( 𝑧 ∈ 𝑐 → 𝐹 ∈ ( 0 [,] +∞ ) ) ) |
| 268 |
262 267
|
ralrimi |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ∀ 𝑧 ∈ 𝑐 𝐹 ∈ ( 0 [,] +∞ ) ) |
| 269 |
15 254 241 268
|
gsummptcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ∈ ( 0 [,] +∞ ) ) |
| 270 |
14 269
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ∈ ℝ* ) |
| 271 |
|
nfv |
⊢ Ⅎ 𝑗 ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 272 |
|
nfcv |
⊢ Ⅎ 𝑗 𝑐 |
| 273 |
30
|
nfpw |
⊢ Ⅎ 𝑗 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) |
| 274 |
|
nfcv |
⊢ Ⅎ 𝑗 Fin |
| 275 |
273 274
|
nfin |
⊢ Ⅎ 𝑗 ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) |
| 276 |
272 275
|
nfel |
⊢ Ⅎ 𝑗 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) |
| 277 |
271 276
|
nfan |
⊢ Ⅎ 𝑗 ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) |
| 278 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) → 𝜑 ) |
| 279 |
79 236
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → dom 𝑐 ⊆ 𝐴 ) |
| 280 |
279
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) → 𝑗 ∈ 𝐴 ) |
| 281 |
278 280 161
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) → Σ* 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 282 |
281
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) → Σ* 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 283 |
282
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) → Σ* 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 284 |
283
|
ex |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( 𝑗 ∈ dom 𝑐 → Σ* 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) ) |
| 285 |
277 284
|
ralrimi |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ∀ 𝑗 ∈ dom 𝑐 Σ* 𝑘 ∈ 𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 286 |
15 254 243 285
|
gsummptcl |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ∈ ( 0 [,] +∞ ) ) |
| 287 |
14 286
|
sselid |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ∈ ℝ* ) |
| 288 |
|
simplr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 289 |
28 276
|
nfan |
⊢ Ⅎ 𝑗 ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) |
| 290 |
|
id |
⊢ ( 𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) → 𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 291 |
|
xpss |
⊢ ( { 𝑗 } × 𝐵 ) ⊆ ( V × V ) |
| 292 |
291
|
rgenw |
⊢ ∀ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ⊆ ( V × V ) |
| 293 |
|
iunss |
⊢ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ⊆ ( V × V ) ↔ ∀ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ⊆ ( V × V ) ) |
| 294 |
292 293
|
mpbir |
⊢ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ⊆ ( V × V ) |
| 295 |
294
|
a1i |
⊢ ( 𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) → ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ⊆ ( V × V ) ) |
| 296 |
290 295
|
sstrd |
⊢ ( 𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) → 𝑐 ⊆ ( V × V ) ) |
| 297 |
79 296
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → 𝑐 ⊆ ( V × V ) ) |
| 298 |
|
df-rel |
⊢ ( Rel 𝑐 ↔ 𝑐 ⊆ ( V × V ) ) |
| 299 |
297 298
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → Rel 𝑐 ) |
| 300 |
1 289 15 2 299 19 17 50
|
gsummpt2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) ↦ 𝐶 ) ) ) ) ) |
| 301 |
|
nfcv |
⊢ Ⅎ 𝑗 dom 𝑐 |
| 302 |
237
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → dom 𝑐 ∈ V ) |
| 303 |
278
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) ∧ 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) ) → 𝜑 ) |
| 304 |
280
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) ∧ 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) ) → 𝑗 ∈ 𝐴 ) |
| 305 |
79
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) → 𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ) |
| 306 |
|
imass1 |
⊢ ( 𝑐 ⊆ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) → ( 𝑐 “ { 𝑗 } ) ⊆ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) “ { 𝑗 } ) ) |
| 307 |
305 306
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) → ( 𝑐 “ { 𝑗 } ) ⊆ ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) “ { 𝑗 } ) ) |
| 308 |
3 4
|
iunsnima |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝐴 ) → ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) “ { 𝑗 } ) = 𝐵 ) |
| 309 |
278 280 308
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) → ( ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) “ { 𝑗 } ) = 𝐵 ) |
| 310 |
307 309
|
sseqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) → ( 𝑐 “ { 𝑗 } ) ⊆ 𝐵 ) |
| 311 |
310
|
sselda |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) ∧ 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) ) → 𝑘 ∈ 𝐵 ) |
| 312 |
303 304 311 5
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) ∧ 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 313 |
312
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) → ∀ 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 314 |
|
imaexg |
⊢ ( 𝑐 ∈ V → ( 𝑐 “ { 𝑗 } ) ∈ V ) |
| 315 |
23 314
|
ax-mp |
⊢ ( 𝑐 “ { 𝑗 } ) ∈ V |
| 316 |
|
nfcv |
⊢ Ⅎ 𝑘 ( 𝑐 “ { 𝑗 } ) |
| 317 |
316
|
esumcl |
⊢ ( ( ( 𝑐 “ { 𝑗 } ) ∈ V ∧ ∀ 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) 𝐶 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 318 |
315 317
|
mpan |
⊢ ( ∀ 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) 𝐶 ∈ ( 0 [,] +∞ ) → Σ* 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 319 |
313 318
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) → Σ* 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 320 |
|
nfv |
⊢ Ⅎ 𝑘 ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) |
| 321 |
278 280 4
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) → 𝐵 ∈ 𝑊 ) |
| 322 |
278
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) ∧ 𝑘 ∈ 𝐵 ) → 𝜑 ) |
| 323 |
280
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) ∧ 𝑘 ∈ 𝐵 ) → 𝑗 ∈ 𝐴 ) |
| 324 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) ∧ 𝑘 ∈ 𝐵 ) → 𝑘 ∈ 𝐵 ) |
| 325 |
322 323 324 5
|
syl12anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) ∧ 𝑘 ∈ 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) ) |
| 326 |
320 321 325 310
|
esummono |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) → Σ* 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) 𝐶 ≤ Σ* 𝑘 ∈ 𝐵 𝐶 ) |
| 327 |
289 301 302 319 281 326
|
esumlef |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → Σ* 𝑗 ∈ dom 𝑐 Σ* 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) 𝐶 ≤ Σ* 𝑗 ∈ dom 𝑐 Σ* 𝑘 ∈ 𝐵 𝐶 ) |
| 328 |
19 242
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → dom 𝑐 ∈ Fin ) |
| 329 |
289 301 328 319
|
esumgsum |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → Σ* 𝑗 ∈ dom 𝑐 Σ* 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) 𝐶 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) 𝐶 ) ) ) |
| 330 |
19
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) → 𝑐 ∈ Fin ) |
| 331 |
|
imafi2 |
⊢ ( 𝑐 ∈ Fin → ( 𝑐 “ { 𝑗 } ) ∈ Fin ) |
| 332 |
330 331
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) → ( 𝑐 “ { 𝑗 } ) ∈ Fin ) |
| 333 |
320 316 332 312
|
esumgsum |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑗 ∈ dom 𝑐 ) → Σ* 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) 𝐶 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) ↦ 𝐶 ) ) ) |
| 334 |
289 333
|
mpteq2da |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) 𝐶 ) = ( 𝑗 ∈ dom 𝑐 ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) ↦ 𝐶 ) ) ) ) |
| 335 |
334
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) 𝐶 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) ↦ 𝐶 ) ) ) ) ) |
| 336 |
329 335
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → Σ* 𝑗 ∈ dom 𝑐 Σ* 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) 𝐶 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) ↦ 𝐶 ) ) ) ) ) |
| 337 |
289 301 328 281
|
esumgsum |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → Σ* 𝑗 ∈ dom 𝑐 Σ* 𝑘 ∈ 𝐵 𝐶 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 338 |
327 336 337
|
3brtr3d |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑘 ∈ ( 𝑐 “ { 𝑗 } ) ↦ 𝐶 ) ) ) ) ≤ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 339 |
300 338
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ≤ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 340 |
339
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ≤ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 341 |
340
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ≤ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 342 |
253 270 287 288 341
|
xrltletrd |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ dom 𝑐 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 343 |
250 252 342
|
rspcedvd |
⊢ ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ∃ 𝑡 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) 𝑠 < 𝑡 ) |
| 344 |
343
|
adantllr |
⊢ ( ( ( ( ( 𝜑 ∧ 𝑠 ∈ ℝ* ) ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ∧ 𝑠 < ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) → ∃ 𝑡 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) 𝑠 < 𝑡 ) |
| 345 |
218 221 222 344
|
syl21anc |
⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑠 < 𝑢 ) ∧ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ) ∧ 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → ∃ 𝑡 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) 𝑠 < 𝑡 ) |
| 346 |
55 89
|
elrnmpti |
⊢ ( 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ↔ ∃ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 347 |
346
|
biimpi |
⊢ ( 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) → ∃ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 348 |
347
|
ad2antlr |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑠 < 𝑢 ) → ∃ 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) 𝑢 = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) |
| 349 |
209 345 348
|
r19.29af |
⊢ ( ( ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) ∧ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) ) ∧ 𝑠 < 𝑢 ) → ∃ 𝑡 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) 𝑠 < 𝑡 ) |
| 350 |
7 134
|
suplub |
⊢ ( 𝜑 → ( ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) → ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ) ) |
| 351 |
350
|
imp |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) → ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ) |
| 352 |
|
breq2 |
⊢ ( 𝑡 = 𝑢 → ( 𝑠 < 𝑡 ↔ 𝑠 < 𝑢 ) ) |
| 353 |
352
|
cbvrexvw |
⊢ ( ∃ 𝑡 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑡 ↔ ∃ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑢 ) |
| 354 |
351 353
|
sylib |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) → ∃ 𝑢 ∈ ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) 𝑠 < 𝑢 ) |
| 355 |
349 354
|
r19.29a |
⊢ ( ( 𝜑 ∧ ( 𝑠 ∈ ℝ* ∧ 𝑠 < sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) ) → ∃ 𝑡 ∈ ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) 𝑠 < 𝑡 ) |
| 356 |
7 135 197 355
|
eqsupd |
⊢ ( 𝜑 → sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) , ℝ* , < ) = sup ( ran ( 𝑐 ∈ ( 𝒫 ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑧 ∈ 𝑐 ↦ 𝐹 ) ) ) , ℝ* , < ) ) |
| 357 |
|
nfcv |
⊢ Ⅎ 𝑗 𝐴 |
| 358 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) = ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) |
| 359 |
28 357 3 161 358
|
esumval |
⊢ ( 𝜑 → Σ* 𝑗 ∈ 𝐴 Σ* 𝑘 ∈ 𝐵 𝐶 = sup ( ran ( 𝑎 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( ( ℝ*𝑠 ↾s ( 0 [,] +∞ ) ) Σg ( 𝑗 ∈ 𝑎 ↦ Σ* 𝑘 ∈ 𝐵 𝐶 ) ) ) , ℝ* , < ) ) |
| 360 |
356 359 182
|
3eqtr4d |
⊢ ( 𝜑 → Σ* 𝑗 ∈ 𝐴 Σ* 𝑘 ∈ 𝐵 𝐶 = Σ* 𝑧 ∈ ∪ 𝑗 ∈ 𝐴 ( { 𝑗 } × 𝐵 ) 𝐹 ) |