Metamath Proof Explorer


Theorem esum2d

Description: Write a double extended sum as a sum over a two-dimensional region. Note that B ( j ) is a function of j . This can be seen as "slicing" the relation A . (Contributed by Thierry Arnoux, 17-May-2020)

Ref Expression
Hypotheses esum2d.0 _ k F
esum2d.1 z = j k F = C
esum2d.2 φ A V
esum2d.3 φ j A B W
esum2d.4 φ j A k B C 0 +∞
Assertion esum2d φ * j A * k B C = * z j A j × B F

Proof

Step Hyp Ref Expression
1 esum2d.0 _ k F
2 esum2d.1 z = j k F = C
3 esum2d.2 φ A V
4 esum2d.3 φ j A B W
5 esum2d.4 φ j A k B C 0 +∞
6 xrltso < Or *
7 6 a1i φ < Or *
8 nfv c φ
9 nfcv _ c s
10 nfmpt1 _ c c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F
11 10 nfrn _ c ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F
12 9 11 nfel c s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F
13 8 12 nfan c φ s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F
14 iccssxr 0 +∞ *
15 xrge0base 0 +∞ = Base 𝑠 * 𝑠 0 +∞
16 xrge0cmn 𝑠 * 𝑠 0 +∞ CMnd
17 16 a1i φ c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ CMnd
18 simpr φ c 𝒫 j A j × B Fin c 𝒫 j A j × B Fin
19 18 elin2d φ c 𝒫 j A j × B Fin c Fin
20 simpll φ c 𝒫 j A j × B Fin z c φ
21 18 elin1d φ c 𝒫 j A j × B Fin c 𝒫 j A j × B
22 21 adantr φ c 𝒫 j A j × B Fin z c c 𝒫 j A j × B
23 vex c V
24 23 elpw c 𝒫 j A j × B c j A j × B
25 22 24 sylib φ c 𝒫 j A j × B Fin z c c j A j × B
26 simpr φ c 𝒫 j A j × B Fin z c z c
27 25 26 sseldd φ c 𝒫 j A j × B Fin z c z j A j × B
28 nfv j φ
29 nfcv _ j z
30 nfiu1 _ j j A j × B
31 29 30 nfel j z j A j × B
32 28 31 nfan j φ z j A j × B
33 nfv k φ z j A j × B j A z j × B
34 nfcv _ k 0 +∞
35 1 34 nfel k F 0 +∞
36 2 adantl φ z j A j × B j A z j × B k B z = j k F = C
37 simp-5l φ z j A j × B j A z j × B k B z = j k φ
38 simp-4r φ z j A j × B j A z j × B k B z = j k j A
39 simplr φ z j A j × B j A z j × B k B z = j k k B
40 37 38 39 5 syl12anc φ z j A j × B j A z j × B k B z = j k C 0 +∞
41 36 40 eqeltrd φ z j A j × B j A z j × B k B z = j k F 0 +∞
42 elsnxp j A z j × B k B z = j k
43 42 biimpa j A z j × B k B z = j k
44 43 adantll φ z j A j × B j A z j × B k B z = j k
45 33 35 41 44 r19.29af2 φ z j A j × B j A z j × B F 0 +∞
46 simpr φ z j A j × B z j A j × B
47 eliun z j A j × B j A z j × B
48 46 47 sylib φ z j A j × B j A z j × B
49 32 45 48 r19.29af φ z j A j × B F 0 +∞
50 20 27 49 syl2anc φ c 𝒫 j A j × B Fin z c F 0 +∞
51 50 ralrimiva φ c 𝒫 j A j × B Fin z c F 0 +∞
52 15 17 19 51 gsummptcl φ c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F 0 +∞
53 14 52 sselid φ c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F *
54 53 ralrimiva φ c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F *
55 eqid c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F = c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F
56 55 rnmptss c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F *
57 54 56 syl φ ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F *
58 57 ad3antrrr φ s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin s = 𝑠 * 𝑠 0 +∞ z c F ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F *
59 simpllr φ s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin s = 𝑠 * 𝑠 0 +∞ z c F s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F
60 58 59 sseldd φ s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin s = 𝑠 * 𝑠 0 +∞ z c F s *
61 snex j V
62 xpexg j V B W j × B V
63 61 4 62 sylancr φ j A j × B V
64 63 ralrimiva φ j A j × B V
65 iunexg A V j A j × B V j A j × B V
66 3 64 65 syl2anc φ j A j × B V
67 49 ralrimiva φ z j A j × B F 0 +∞
68 nfcv _ z j A j × B
69 68 esumcl j A j × B V z j A j × B F 0 +∞ * z j A j × B F 0 +∞
70 66 67 69 syl2anc φ * z j A j × B F 0 +∞
71 14 70 sselid φ * z j A j × B F *
72 71 ad3antrrr φ s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin s = 𝑠 * 𝑠 0 +∞ z c F * z j A j × B F *
73 simpr φ s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin s = 𝑠 * 𝑠 0 +∞ z c F s = 𝑠 * 𝑠 0 +∞ z c F
74 nfv z φ c 𝒫 j A j × B Fin
75 nfcv _ z c
76 74 75 19 50 esumgsum φ c 𝒫 j A j × B Fin * z c F = 𝑠 * 𝑠 0 +∞ z c F
77 66 adantr φ c 𝒫 j A j × B Fin j A j × B V
78 49 adantlr φ c 𝒫 j A j × B Fin z j A j × B F 0 +∞
79 21 24 sylib φ c 𝒫 j A j × B Fin c j A j × B
80 74 77 78 79 esummono φ c 𝒫 j A j × B Fin * z c F * z j A j × B F
81 76 80 eqbrtrrd φ c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * z j A j × B F
82 81 adantlr φ s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * z j A j × B F
83 82 adantr φ s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin s = 𝑠 * 𝑠 0 +∞ z c F 𝑠 * 𝑠 0 +∞ z c F * z j A j × B F
84 73 83 eqbrtrd φ s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin s = 𝑠 * 𝑠 0 +∞ z c F s * z j A j × B F
85 xrlenlt s * * z j A j × B F * s * z j A j × B F ¬ * z j A j × B F < s
86 85 biimpa s * * z j A j × B F * s * z j A j × B F ¬ * z j A j × B F < s
87 60 72 84 86 syl21anc φ s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin s = 𝑠 * 𝑠 0 +∞ z c F ¬ * z j A j × B F < s
88 simpr φ s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F
89 ovex 𝑠 * 𝑠 0 +∞ z c F V
90 55 89 elrnmpti s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin s = 𝑠 * 𝑠 0 +∞ z c F
91 88 90 sylib φ s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin s = 𝑠 * 𝑠 0 +∞ z c F
92 13 87 91 r19.29af φ s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F ¬ * z j A j × B F < s
93 92 ralrimiva φ s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F ¬ * z j A j × B F < s
94 nfv c φ s * s < * z j A j × B F
95 nfv c s < t
96 11 95 nfrex c t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t
97 76 adantlr φ s * c 𝒫 j A j × B Fin * z c F = 𝑠 * 𝑠 0 +∞ z c F
98 97 adantlr φ s * s < * z j A j × B F c 𝒫 j A j × B Fin * z c F = 𝑠 * 𝑠 0 +∞ z c F
99 98 adantr φ s * s < * z j A j × B F c 𝒫 j A j × B Fin s < * z c F * z c F = 𝑠 * 𝑠 0 +∞ z c F
100 simplr φ s * s < * z j A j × B F c 𝒫 j A j × B Fin s < * z c F c 𝒫 j A j × B Fin
101 89 a1i φ s * s < * z j A j × B F c 𝒫 j A j × B Fin s < * z c F 𝑠 * 𝑠 0 +∞ z c F V
102 55 elrnmpt1 c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F V 𝑠 * 𝑠 0 +∞ z c F ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F
103 100 101 102 syl2anc φ s * s < * z j A j × B F c 𝒫 j A j × B Fin s < * z c F 𝑠 * 𝑠 0 +∞ z c F ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F
104 99 103 eqeltrd φ s * s < * z j A j × B F c 𝒫 j A j × B Fin s < * z c F * z c F ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F
105 simpr φ s * s < * z j A j × B F c 𝒫 j A j × B Fin s < * z c F t = * z c F t = * z c F
106 105 breq2d φ s * s < * z j A j × B F c 𝒫 j A j × B Fin s < * z c F t = * z c F s < t s < * z c F
107 simpr φ s * s < * z j A j × B F c 𝒫 j A j × B Fin s < * z c F s < * z c F
108 104 106 107 rspcedvd φ s * s < * z j A j × B F c 𝒫 j A j × B Fin s < * z c F t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t
109 nfv z φ s *
110 nfcv _ z s
111 nfcv _ z <
112 68 nfesum1 _ z * z j A j × B F
113 110 111 112 nfbr z s < * z j A j × B F
114 109 113 nfan z φ s * s < * z j A j × B F
115 66 ad2antrr φ s * s < * z j A j × B F j A j × B V
116 49 3ad2antr3 φ s * s < * z j A j × B F z j A j × B F 0 +∞
117 116 3anassrs φ s * s < * z j A j × B F z j A j × B F 0 +∞
118 simplr φ s * s < * z j A j × B F s *
119 simpr φ s * s < * z j A j × B F s < * z j A j × B F
120 114 115 117 118 119 esumlub φ s * s < * z j A j × B F c 𝒫 j A j × B Fin s < * z c F
121 94 96 108 120 r19.29af2 φ s * s < * z j A j × B F t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t
122 121 ex φ s * s < * z j A j × B F t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t
123 122 ralrimiva φ s * s < * z j A j × B F t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t
124 93 123 jca φ s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F ¬ * z j A j × B F < s s * s < * z j A j × B F t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t
125 simpr φ r = * z j A j × B F r = * z j A j × B F
126 125 breq1d φ r = * z j A j × B F r < s * z j A j × B F < s
127 126 notbid φ r = * z j A j × B F ¬ r < s ¬ * z j A j × B F < s
128 127 ralbidv φ r = * z j A j × B F s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F ¬ r < s s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F ¬ * z j A j × B F < s
129 125 breq2d φ r = * z j A j × B F s < r s < * z j A j × B F
130 129 imbi1d φ r = * z j A j × B F s < r t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t s < * z j A j × B F t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t
131 130 ralbidv φ r = * z j A j × B F s * s < r t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t s * s < * z j A j × B F t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t
132 128 131 anbi12d φ r = * z j A j × B F s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F ¬ r < s s * s < r t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F ¬ * z j A j × B F < s s * s < * z j A j × B F t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t
133 71 132 rspcedv φ s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F ¬ * z j A j × B F < s s * s < * z j A j × B F t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t r * s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F ¬ r < s s * s < r t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t
134 124 133 mpd φ r * s ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F ¬ r < s s * s < r t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t
135 7 134 supcl φ sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < *
136 nfv a φ
137 nfcv _ a s
138 nfmpt1 _ a a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C
139 138 nfrn _ a ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C
140 137 139 nfel a s ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C
141 136 140 nfan a φ s ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C
142 simpr φ a 𝒫 A Fin a 𝒫 A Fin
143 simpll φ a 𝒫 A Fin j a φ
144 142 elin1d φ a 𝒫 A Fin a 𝒫 A
145 elpwi a 𝒫 A a A
146 144 145 syl φ a 𝒫 A Fin a A
147 146 sselda φ a 𝒫 A Fin j a j A
148 143 147 4 syl2anc φ a 𝒫 A Fin j a B W
149 143 adantrr φ a 𝒫 A Fin j a k B φ
150 147 adantrr φ a 𝒫 A Fin j a k B j A
151 simprr φ a 𝒫 A Fin j a k B k B
152 149 150 151 5 syl12anc φ a 𝒫 A Fin j a k B C 0 +∞
153 142 elin2d φ a 𝒫 A Fin a Fin
154 1 2 142 148 152 153 esum2dlem φ a 𝒫 A Fin * j a * k B C = * z j a j × B F
155 nfv j φ a 𝒫 A Fin
156 nfcv _ j a
157 5 anassrs φ j A k B C 0 +∞
158 157 ralrimiva φ j A k B C 0 +∞
159 nfcv _ k B
160 159 esumcl B W k B C 0 +∞ * k B C 0 +∞
161 4 158 160 syl2anc φ j A * k B C 0 +∞
162 143 147 161 syl2anc φ a 𝒫 A Fin j a * k B C 0 +∞
163 155 156 153 162 esumgsum φ a 𝒫 A Fin * j a * k B C = 𝑠 * 𝑠 0 +∞ j a * k B C
164 154 163 eqtr3d φ a 𝒫 A Fin * z j a j × B F = 𝑠 * 𝑠 0 +∞ j a * k B C
165 nfv z φ a 𝒫 A Fin
166 66 adantr φ a 𝒫 A Fin j A j × B V
167 49 adantlr φ a 𝒫 A Fin z j A j × B F 0 +∞
168 iunss1 a A j a j × B j A j × B
169 146 168 syl φ a 𝒫 A Fin j a j × B j A j × B
170 165 166 167 169 esummono φ a 𝒫 A Fin * z j a j × B F * z j A j × B F
171 164 170 eqbrtrrd φ a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C * z j A j × B F
172 16 a1i φ a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ CMnd
173 162 ralrimiva φ a 𝒫 A Fin j a * k B C 0 +∞
174 15 172 153 173 gsummptcl φ a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C 0 +∞
175 14 174 sselid φ a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C *
176 71 adantr φ a 𝒫 A Fin * z j A j × B F *
177 xrlenlt 𝑠 * 𝑠 0 +∞ j a * k B C * * z j A j × B F * 𝑠 * 𝑠 0 +∞ j a * k B C * z j A j × B F ¬ * z j A j × B F < 𝑠 * 𝑠 0 +∞ j a * k B C
178 175 176 177 syl2anc φ a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C * z j A j × B F ¬ * z j A j × B F < 𝑠 * 𝑠 0 +∞ j a * k B C
179 171 178 mpbid φ a 𝒫 A Fin ¬ * z j A j × B F < 𝑠 * 𝑠 0 +∞ j a * k B C
180 nfv z φ
181 eqidd φ c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F = 𝑠 * 𝑠 0 +∞ z c F
182 180 68 66 49 181 esumval φ * z j A j × B F = sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * <
183 182 adantr φ a 𝒫 A Fin * z j A j × B F = sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * <
184 183 breq1d φ a 𝒫 A Fin * z j A j × B F < 𝑠 * 𝑠 0 +∞ j a * k B C sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < < 𝑠 * 𝑠 0 +∞ j a * k B C
185 179 184 mtbid φ a 𝒫 A Fin ¬ sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < < 𝑠 * 𝑠 0 +∞ j a * k B C
186 185 adantlr φ s ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C a 𝒫 A Fin ¬ sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < < 𝑠 * 𝑠 0 +∞ j a * k B C
187 186 adantr φ s ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C a 𝒫 A Fin s = 𝑠 * 𝑠 0 +∞ j a * k B C ¬ sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < < 𝑠 * 𝑠 0 +∞ j a * k B C
188 simpr φ s ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C a 𝒫 A Fin s = 𝑠 * 𝑠 0 +∞ j a * k B C s = 𝑠 * 𝑠 0 +∞ j a * k B C
189 188 breq2d φ s ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C a 𝒫 A Fin s = 𝑠 * 𝑠 0 +∞ j a * k B C sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < < s sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < < 𝑠 * 𝑠 0 +∞ j a * k B C
190 189 notbid φ s ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C a 𝒫 A Fin s = 𝑠 * 𝑠 0 +∞ j a * k B C ¬ sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < < s ¬ sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < < 𝑠 * 𝑠 0 +∞ j a * k B C
191 187 190 mpbird φ s ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C a 𝒫 A Fin s = 𝑠 * 𝑠 0 +∞ j a * k B C ¬ sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < < s
192 eqid a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C = a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C
193 ovex 𝑠 * 𝑠 0 +∞ j a * k B C V
194 192 193 elrnmpti s ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C a 𝒫 A Fin s = 𝑠 * 𝑠 0 +∞ j a * k B C
195 194 biimpi s ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C a 𝒫 A Fin s = 𝑠 * 𝑠 0 +∞ j a * k B C
196 195 adantl φ s ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C a 𝒫 A Fin s = 𝑠 * 𝑠 0 +∞ j a * k B C
197 141 191 196 r19.29af φ s ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C ¬ sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < < s
198 9 nfel1 c s *
199 nfcv _ c <
200 nfcv _ c *
201 11 200 199 nfsup _ c sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * <
202 9 199 201 nfbr c s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * <
203 198 202 nfan c s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * <
204 8 203 nfan c φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * <
205 nfcv _ c u
206 205 11 nfel c u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F
207 204 206 nfan c φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F
208 nfv c s < u
209 207 208 nfan c φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u
210 simp-5l φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F φ
211 simpr1l φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F s *
212 211 3anassrs φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F s *
213 212 3anassrs φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F s *
214 210 213 jca φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F φ s *
215 simpr1r φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * <
216 215 3anassrs φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * <
217 216 3anassrs φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * <
218 214 217 jca φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * <
219 simpllr φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F s < u
220 simpr φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F u = 𝑠 * 𝑠 0 +∞ z c F
221 219 220 breqtrd φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F s < 𝑠 * 𝑠 0 +∞ z c F
222 simplr φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin
223 simpr φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin c 𝒫 j A j × B Fin
224 223 elin1d φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin c 𝒫 j A j × B
225 elpwi c 𝒫 j A j × B c j A j × B
226 dmss c j A j × B dom c dom j A j × B
227 dmiun dom j A j × B = j A dom j × B
228 226 227 sseqtrdi c j A j × B dom c j A dom j × B
229 dmxpss dom j × B j
230 229 a1i j A dom j × B j
231 snssi j A j A
232 230 231 sstrd j A dom j × B A
233 232 rgen j A dom j × B A
234 iunss j A dom j × B A j A dom j × B A
235 233 234 mpbir j A dom j × B A
236 228 235 sstrdi c j A j × B dom c A
237 23 dmex dom c V
238 237 elpw dom c 𝒫 A dom c A
239 236 238 sylibr c j A j × B dom c 𝒫 A
240 224 225 239 3syl φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin dom c 𝒫 A
241 223 elin2d φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin c Fin
242 dmfi c Fin dom c Fin
243 241 242 syl φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin dom c Fin
244 240 243 elind φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin dom c 𝒫 A Fin
245 ovex 𝑠 * 𝑠 0 +∞ j dom c * k B C V
246 245 a1i φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ j dom c * k B C V
247 mpteq1 a = dom c j a * k B C = j dom c * k B C
248 247 oveq2d a = dom c 𝑠 * 𝑠 0 +∞ j a * k B C = 𝑠 * 𝑠 0 +∞ j dom c * k B C
249 192 248 elrnmpt1s dom c 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j dom c * k B C V 𝑠 * 𝑠 0 +∞ j dom c * k B C ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C
250 244 246 249 syl2anc φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ j dom c * k B C ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C
251 simpr φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin t = 𝑠 * 𝑠 0 +∞ j dom c * k B C t = 𝑠 * 𝑠 0 +∞ j dom c * k B C
252 251 breq2d φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin t = 𝑠 * 𝑠 0 +∞ j dom c * k B C s < t s < 𝑠 * 𝑠 0 +∞ j dom c * k B C
253 simpllr φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin s *
254 16 a1i φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ CMnd
255 nfcv _ z 𝑠 * 𝑠 0 +∞
256 nfcv _ z Σ𝑔
257 nfmpt1 _ z z c F
258 255 256 257 nfov _ z 𝑠 * 𝑠 0 +∞ z c F
259 110 111 258 nfbr z s < 𝑠 * 𝑠 0 +∞ z c F
260 109 259 nfan z φ s * s < 𝑠 * 𝑠 0 +∞ z c F
261 nfv z c 𝒫 j A j × B Fin
262 260 261 nfan z φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin
263 simp-4l φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin z c φ
264 224 225 syl φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin c j A j × B
265 264 sselda φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin z c z j A j × B
266 263 265 49 syl2anc φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin z c F 0 +∞
267 266 ex φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin z c F 0 +∞
268 262 267 ralrimi φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin z c F 0 +∞
269 15 254 241 268 gsummptcl φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F 0 +∞
270 14 269 sselid φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F *
271 nfv j φ s * s < 𝑠 * 𝑠 0 +∞ z c F
272 nfcv _ j c
273 30 nfpw _ j 𝒫 j A j × B
274 nfcv _ j Fin
275 273 274 nfin _ j 𝒫 j A j × B Fin
276 272 275 nfel j c 𝒫 j A j × B Fin
277 271 276 nfan j φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin
278 simpll φ c 𝒫 j A j × B Fin j dom c φ
279 79 236 syl φ c 𝒫 j A j × B Fin dom c A
280 279 sselda φ c 𝒫 j A j × B Fin j dom c j A
281 278 280 161 syl2anc φ c 𝒫 j A j × B Fin j dom c * k B C 0 +∞
282 281 adantllr φ s * c 𝒫 j A j × B Fin j dom c * k B C 0 +∞
283 282 adantllr φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin j dom c * k B C 0 +∞
284 283 ex φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin j dom c * k B C 0 +∞
285 277 284 ralrimi φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin j dom c * k B C 0 +∞
286 15 254 243 285 gsummptcl φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ j dom c * k B C 0 +∞
287 14 286 sselid φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ j dom c * k B C *
288 simplr φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin s < 𝑠 * 𝑠 0 +∞ z c F
289 28 276 nfan j φ c 𝒫 j A j × B Fin
290 id c j A j × B c j A j × B
291 xpss j × B V × V
292 291 rgenw j A j × B V × V
293 iunss j A j × B V × V j A j × B V × V
294 292 293 mpbir j A j × B V × V
295 294 a1i c j A j × B j A j × B V × V
296 290 295 sstrd c j A j × B c V × V
297 79 296 syl φ c 𝒫 j A j × B Fin c V × V
298 df-rel Rel c c V × V
299 297 298 sylibr φ c 𝒫 j A j × B Fin Rel c
300 1 289 15 2 299 19 17 50 gsummpt2d φ c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F = 𝑠 * 𝑠 0 +∞ j dom c 𝑠 * 𝑠 0 +∞ k c j C
301 nfcv _ j dom c
302 237 a1i φ c 𝒫 j A j × B Fin dom c V
303 278 adantr φ c 𝒫 j A j × B Fin j dom c k c j φ
304 280 adantr φ c 𝒫 j A j × B Fin j dom c k c j j A
305 79 adantr φ c 𝒫 j A j × B Fin j dom c c j A j × B
306 imass1 c j A j × B c j j A j × B j
307 305 306 syl φ c 𝒫 j A j × B Fin j dom c c j j A j × B j
308 3 4 iunsnima φ j A j A j × B j = B
309 278 280 308 syl2anc φ c 𝒫 j A j × B Fin j dom c j A j × B j = B
310 307 309 sseqtrd φ c 𝒫 j A j × B Fin j dom c c j B
311 310 sselda φ c 𝒫 j A j × B Fin j dom c k c j k B
312 303 304 311 5 syl12anc φ c 𝒫 j A j × B Fin j dom c k c j C 0 +∞
313 312 ralrimiva φ c 𝒫 j A j × B Fin j dom c k c j C 0 +∞
314 imaexg c V c j V
315 23 314 ax-mp c j V
316 nfcv _ k c j
317 316 esumcl c j V k c j C 0 +∞ * k c j C 0 +∞
318 315 317 mpan k c j C 0 +∞ * k c j C 0 +∞
319 313 318 syl φ c 𝒫 j A j × B Fin j dom c * k c j C 0 +∞
320 nfv k φ c 𝒫 j A j × B Fin j dom c
321 278 280 4 syl2anc φ c 𝒫 j A j × B Fin j dom c B W
322 278 adantr φ c 𝒫 j A j × B Fin j dom c k B φ
323 280 adantr φ c 𝒫 j A j × B Fin j dom c k B j A
324 simpr φ c 𝒫 j A j × B Fin j dom c k B k B
325 322 323 324 5 syl12anc φ c 𝒫 j A j × B Fin j dom c k B C 0 +∞
326 320 321 325 310 esummono φ c 𝒫 j A j × B Fin j dom c * k c j C * k B C
327 289 301 302 319 281 326 esumlef φ c 𝒫 j A j × B Fin * j dom c * k c j C * j dom c * k B C
328 19 242 syl φ c 𝒫 j A j × B Fin dom c Fin
329 289 301 328 319 esumgsum φ c 𝒫 j A j × B Fin * j dom c * k c j C = 𝑠 * 𝑠 0 +∞ j dom c * k c j C
330 19 adantr φ c 𝒫 j A j × B Fin j dom c c Fin
331 imafi2 c Fin c j Fin
332 330 331 syl φ c 𝒫 j A j × B Fin j dom c c j Fin
333 320 316 332 312 esumgsum φ c 𝒫 j A j × B Fin j dom c * k c j C = 𝑠 * 𝑠 0 +∞ k c j C
334 289 333 mpteq2da φ c 𝒫 j A j × B Fin j dom c * k c j C = j dom c 𝑠 * 𝑠 0 +∞ k c j C
335 334 oveq2d φ c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ j dom c * k c j C = 𝑠 * 𝑠 0 +∞ j dom c 𝑠 * 𝑠 0 +∞ k c j C
336 329 335 eqtrd φ c 𝒫 j A j × B Fin * j dom c * k c j C = 𝑠 * 𝑠 0 +∞ j dom c 𝑠 * 𝑠 0 +∞ k c j C
337 289 301 328 281 esumgsum φ c 𝒫 j A j × B Fin * j dom c * k B C = 𝑠 * 𝑠 0 +∞ j dom c * k B C
338 327 336 337 3brtr3d φ c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ j dom c 𝑠 * 𝑠 0 +∞ k c j C 𝑠 * 𝑠 0 +∞ j dom c * k B C
339 300 338 eqbrtrd φ c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F 𝑠 * 𝑠 0 +∞ j dom c * k B C
340 339 adantlr φ s * c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F 𝑠 * 𝑠 0 +∞ j dom c * k B C
341 340 adantlr φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F 𝑠 * 𝑠 0 +∞ j dom c * k B C
342 253 270 287 288 341 xrltletrd φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin s < 𝑠 * 𝑠 0 +∞ j dom c * k B C
343 250 252 342 rspcedvd φ s * s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin t ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C s < t
344 343 adantllr φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < s < 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin t ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C s < t
345 218 221 222 344 syl21anc φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F t ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C s < t
346 55 89 elrnmpti u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F
347 346 biimpi u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F
348 347 ad2antlr φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u c 𝒫 j A j × B Fin u = 𝑠 * 𝑠 0 +∞ z c F
349 209 345 348 r19.29af φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u t ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C s < t
350 7 134 suplub φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t
351 350 imp φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t
352 breq2 t = u s < t s < u
353 352 cbvrexvw t ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < t u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u
354 351 353 sylib φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < u ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F s < u
355 349 354 r19.29a φ s * s < sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * < t ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C s < t
356 7 135 197 355 eqsupd φ sup ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C * < = sup ran c 𝒫 j A j × B Fin 𝑠 * 𝑠 0 +∞ z c F * <
357 nfcv _ j A
358 eqidd φ a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C = 𝑠 * 𝑠 0 +∞ j a * k B C
359 28 357 3 161 358 esumval φ * j A * k B C = sup ran a 𝒫 A Fin 𝑠 * 𝑠 0 +∞ j a * k B C * <
360 356 359 182 3eqtr4d φ * j A * k B C = * z j A j × B F