Metamath Proof Explorer


Theorem esumiun

Description: Sum over a nonnecessarily disjoint indexed union. The inequality is strict in the case where the sets B(x) overlap. (Contributed by Thierry Arnoux, 21-Sep-2019)

Ref Expression
Hypotheses esumiun.0 φ A V
esumiun.1 φ j A B W
esumiun.2 φ j A k B C 0 +∞
Assertion esumiun φ * k j A B C * j A * k B C

Proof

Step Hyp Ref Expression
1 esumiun.0 φ A V
2 esumiun.1 φ j A B W
3 esumiun.2 φ j A k B C 0 +∞
4 1 2 aciunf1 φ f f : j A B 1-1 j A j × B l j A B 2 nd f l = l
5 f1f1orn f : j A B 1-1 j A j × B f : j A B 1-1 onto ran f
6 5 anim1i f : j A B 1-1 j A j × B l j A B 2 nd f l = l f : j A B 1-1 onto ran f l j A B 2 nd f l = l
7 f1f f : j A B 1-1 j A j × B f : j A B j A j × B
8 7 frnd f : j A B 1-1 j A j × B ran f j A j × B
9 8 adantr f : j A B 1-1 j A j × B l j A B 2 nd f l = l ran f j A j × B
10 6 9 jca f : j A B 1-1 j A j × B l j A B 2 nd f l = l f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B
11 10 eximi f f : j A B 1-1 j A j × B l j A B 2 nd f l = l f f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B
12 4 11 syl φ f f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B
13 nfv z φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B
14 nfcv _ z C
15 nfcsb1v _ k 2 nd z / k C
16 nfcv _ z j A B
17 nfcv _ z ran f
18 nfcv _ z f -1
19 csbeq1a k = 2 nd z C = 2 nd z / k C
20 2 ralrimiva φ j A B W
21 iunexg A V j A B W j A B V
22 1 20 21 syl2anc φ j A B V
23 22 adantr φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B j A B V
24 simprl φ f : j A B 1-1 onto ran f ran f j A j × B f : j A B 1-1 onto ran f
25 f1ocnv f : j A B 1-1 onto ran f f -1 : ran f 1-1 onto j A B
26 24 25 syl φ f : j A B 1-1 onto ran f ran f j A j × B f -1 : ran f 1-1 onto j A B
27 26 adantrlr φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B f -1 : ran f 1-1 onto j A B
28 nfv j φ
29 nfcv _ j f
30 nfiu1 _ j j A B
31 29 nfrn _ j ran f
32 29 30 31 nff1o j f : j A B 1-1 onto ran f
33 nfv j 2 nd f l = l
34 30 33 nfralw j l j A B 2 nd f l = l
35 32 34 nfan j f : j A B 1-1 onto ran f l j A B 2 nd f l = l
36 nfcv _ j ran f
37 nfiu1 _ j j A j × B
38 36 37 nfss j ran f j A j × B
39 35 38 nfan j f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B
40 28 39 nfan j φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B
41 nfv j z ran f
42 40 41 nfan j φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f
43 simpr φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B k j A B f k = z f k = z
44 43 fveq2d φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B k j A B f k = z 2 nd f k = 2 nd z
45 simplr φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B k j A B f k = z k j A B
46 simp-4r φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B
47 46 simpld φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B f : j A B 1-1 onto ran f l j A B 2 nd f l = l
48 47 simprd φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B l j A B 2 nd f l = l
49 48 ad2antrr φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B k j A B f k = z l j A B 2 nd f l = l
50 2fveq3 l = k 2 nd f l = 2 nd f k
51 id l = k l = k
52 50 51 eqeq12d l = k 2 nd f l = l 2 nd f k = k
53 52 rspcva k j A B l j A B 2 nd f l = l 2 nd f k = k
54 45 49 53 syl2anc φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B k j A B f k = z 2 nd f k = k
55 44 54 eqtr3d φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B k j A B f k = z 2 nd z = k
56 47 simpld φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B f : j A B 1-1 onto ran f
57 56 ad2antrr φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B k j A B f k = z f : j A B 1-1 onto ran f
58 f1ocnvfv1 f : j A B 1-1 onto ran f k j A B f -1 f k = k
59 57 45 58 syl2anc φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B k j A B f k = z f -1 f k = k
60 43 fveq2d φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B k j A B f k = z f -1 f k = f -1 z
61 55 59 60 3eqtr2rd φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B k j A B f k = z f -1 z = 2 nd z
62 f1ofn f : j A B 1-1 onto ran f f Fn j A B
63 56 62 syl φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B f Fn j A B
64 simpllr φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B z ran f
65 fvelrnb f Fn j A B z ran f k j A B f k = z
66 65 biimpa f Fn j A B z ran f k j A B f k = z
67 63 64 66 syl2anc φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B k j A B f k = z
68 61 67 r19.29a φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B f -1 z = 2 nd z
69 simprr φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B ran f j A j × B
70 69 sselda φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f z j A j × B
71 eliun z j A j × B j A z j × B
72 70 71 sylib φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f j A z j × B
73 42 68 72 r19.29af φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z ran f f -1 z = 2 nd z
74 nfcv _ j k
75 74 30 nfel j k j A B
76 28 75 nfan j φ k j A B
77 3 adantllr φ k j A B j A k B C 0 +∞
78 eliun k j A B j A k B
79 78 biimpi k j A B j A k B
80 79 adantl φ k j A B j A k B
81 76 77 80 r19.29af φ k j A B C 0 +∞
82 81 adantlr φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B k j A B C 0 +∞
83 13 14 15 16 17 18 19 23 27 73 82 esumf1o φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B * k j A B C = * z ran f 2 nd z / k C
84 83 eqcomd φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B * z ran f 2 nd z / k C = * k j A B C
85 snex j V
86 85 a1i φ j A j V
87 86 2 xpexd φ j A j × B V
88 87 ralrimiva φ j A j × B V
89 iunexg A V j A j × B V j A j × B V
90 1 88 89 syl2anc φ j A j × B V
91 90 adantr φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B j A j × B V
92 nfcv _ j z
93 92 37 nfel j z j A j × B
94 28 93 nfan j φ z j A j × B
95 nfcv _ j 2 nd z
96 nfcv _ j C
97 95 96 nfcsbw _ j 2 nd z / k C
98 nfcv _ j 0 +∞
99 97 98 nfel j 2 nd z / k C 0 +∞
100 simprr φ z j A j × B j A 1 st z = j 2 nd z B 2 nd z B
101 simplll φ z j A j × B j A 1 st z = j 2 nd z B φ
102 simplr φ z j A j × B j A 1 st z = j 2 nd z B j A
103 3 ralrimiva φ j A k B C 0 +∞
104 101 102 103 syl2anc φ z j A j × B j A 1 st z = j 2 nd z B k B C 0 +∞
105 rspcsbela 2 nd z B k B C 0 +∞ 2 nd z / k C 0 +∞
106 100 104 105 syl2anc φ z j A j × B j A 1 st z = j 2 nd z B 2 nd z / k C 0 +∞
107 xp1st z j × B 1 st z j
108 elsni 1 st z j 1 st z = j
109 107 108 syl z j × B 1 st z = j
110 xp2nd z j × B 2 nd z B
111 109 110 jca z j × B 1 st z = j 2 nd z B
112 111 reximi j A z j × B j A 1 st z = j 2 nd z B
113 71 112 sylbi z j A j × B j A 1 st z = j 2 nd z B
114 113 adantl φ z j A j × B j A 1 st z = j 2 nd z B
115 94 99 106 114 r19.29af2 φ z j A j × B 2 nd z / k C 0 +∞
116 115 adantlr φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B z j A j × B 2 nd z / k C 0 +∞
117 simprr φ f : j A B 1-1 onto ran f ran f j A j × B ran f j A j × B
118 117 adantrlr φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B ran f j A j × B
119 13 91 116 118 esummono φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B * z ran f 2 nd z / k C * z j A j × B 2 nd z / k C
120 84 119 eqbrtrrd φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B * k j A B C * z j A j × B 2 nd z / k C
121 vex j V
122 vex k V
123 121 122 op2ndd z = j k 2 nd z = k
124 123 eqcomd z = j k k = 2 nd z
125 124 19 syl z = j k C = 2 nd z / k C
126 125 eqcomd z = j k 2 nd z / k C = C
127 3 anasss φ j A k B C 0 +∞
128 15 126 1 2 127 esum2d φ * j A * k B C = * z j A j × B 2 nd z / k C
129 128 adantr φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B * j A * k B C = * z j A j × B 2 nd z / k C
130 120 129 breqtrrd φ f : j A B 1-1 onto ran f l j A B 2 nd f l = l ran f j A j × B * k j A B C * j A * k B C
131 12 130 exlimddv φ * k j A B C * j A * k B C