| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumiun.0 |
|- ( ph -> A e. V ) |
| 2 |
|
esumiun.1 |
|- ( ( ph /\ j e. A ) -> B e. W ) |
| 3 |
|
esumiun.2 |
|- ( ( ( ph /\ j e. A ) /\ k e. B ) -> C e. ( 0 [,] +oo ) ) |
| 4 |
1 2
|
aciunf1 |
|- ( ph -> E. f ( f : U_ j e. A B -1-1-> U_ j e. A ( { j } X. B ) /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) ) |
| 5 |
|
f1f1orn |
|- ( f : U_ j e. A B -1-1-> U_ j e. A ( { j } X. B ) -> f : U_ j e. A B -1-1-onto-> ran f ) |
| 6 |
5
|
anim1i |
|- ( ( f : U_ j e. A B -1-1-> U_ j e. A ( { j } X. B ) /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) -> ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) ) |
| 7 |
|
f1f |
|- ( f : U_ j e. A B -1-1-> U_ j e. A ( { j } X. B ) -> f : U_ j e. A B --> U_ j e. A ( { j } X. B ) ) |
| 8 |
7
|
frnd |
|- ( f : U_ j e. A B -1-1-> U_ j e. A ( { j } X. B ) -> ran f C_ U_ j e. A ( { j } X. B ) ) |
| 9 |
8
|
adantr |
|- ( ( f : U_ j e. A B -1-1-> U_ j e. A ( { j } X. B ) /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) -> ran f C_ U_ j e. A ( { j } X. B ) ) |
| 10 |
6 9
|
jca |
|- ( ( f : U_ j e. A B -1-1-> U_ j e. A ( { j } X. B ) /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) -> ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) |
| 11 |
10
|
eximi |
|- ( E. f ( f : U_ j e. A B -1-1-> U_ j e. A ( { j } X. B ) /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) -> E. f ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) |
| 12 |
4 11
|
syl |
|- ( ph -> E. f ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) |
| 13 |
|
nfv |
|- F/ z ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) |
| 14 |
|
nfcv |
|- F/_ z C |
| 15 |
|
nfcsb1v |
|- F/_ k [_ ( 2nd ` z ) / k ]_ C |
| 16 |
|
nfcv |
|- F/_ z U_ j e. A B |
| 17 |
|
nfcv |
|- F/_ z ran f |
| 18 |
|
nfcv |
|- F/_ z `' f |
| 19 |
|
csbeq1a |
|- ( k = ( 2nd ` z ) -> C = [_ ( 2nd ` z ) / k ]_ C ) |
| 20 |
2
|
ralrimiva |
|- ( ph -> A. j e. A B e. W ) |
| 21 |
|
iunexg |
|- ( ( A e. V /\ A. j e. A B e. W ) -> U_ j e. A B e. _V ) |
| 22 |
1 20 21
|
syl2anc |
|- ( ph -> U_ j e. A B e. _V ) |
| 23 |
22
|
adantr |
|- ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) -> U_ j e. A B e. _V ) |
| 24 |
|
simprl |
|- ( ( ph /\ ( f : U_ j e. A B -1-1-onto-> ran f /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) -> f : U_ j e. A B -1-1-onto-> ran f ) |
| 25 |
|
f1ocnv |
|- ( f : U_ j e. A B -1-1-onto-> ran f -> `' f : ran f -1-1-onto-> U_ j e. A B ) |
| 26 |
24 25
|
syl |
|- ( ( ph /\ ( f : U_ j e. A B -1-1-onto-> ran f /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) -> `' f : ran f -1-1-onto-> U_ j e. A B ) |
| 27 |
26
|
adantrlr |
|- ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) -> `' f : ran f -1-1-onto-> U_ j e. A B ) |
| 28 |
|
nfv |
|- F/ j ph |
| 29 |
|
nfcv |
|- F/_ j f |
| 30 |
|
nfiu1 |
|- F/_ j U_ j e. A B |
| 31 |
29
|
nfrn |
|- F/_ j ran f |
| 32 |
29 30 31
|
nff1o |
|- F/ j f : U_ j e. A B -1-1-onto-> ran f |
| 33 |
|
nfv |
|- F/ j ( 2nd ` ( f ` l ) ) = l |
| 34 |
30 33
|
nfralw |
|- F/ j A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l |
| 35 |
32 34
|
nfan |
|- F/ j ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) |
| 36 |
|
nfcv |
|- F/_ j ran f |
| 37 |
|
nfiu1 |
|- F/_ j U_ j e. A ( { j } X. B ) |
| 38 |
36 37
|
nfss |
|- F/ j ran f C_ U_ j e. A ( { j } X. B ) |
| 39 |
35 38
|
nfan |
|- F/ j ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) |
| 40 |
28 39
|
nfan |
|- F/ j ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) |
| 41 |
|
nfv |
|- F/ j z e. ran f |
| 42 |
40 41
|
nfan |
|- F/ j ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) |
| 43 |
|
simpr |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) /\ k e. U_ j e. A B ) /\ ( f ` k ) = z ) -> ( f ` k ) = z ) |
| 44 |
43
|
fveq2d |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) /\ k e. U_ j e. A B ) /\ ( f ` k ) = z ) -> ( 2nd ` ( f ` k ) ) = ( 2nd ` z ) ) |
| 45 |
|
simplr |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) /\ k e. U_ j e. A B ) /\ ( f ` k ) = z ) -> k e. U_ j e. A B ) |
| 46 |
|
simp-4r |
|- ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) -> ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) |
| 47 |
46
|
simpld |
|- ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) -> ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) ) |
| 48 |
47
|
simprd |
|- ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) -> A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) |
| 49 |
48
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) /\ k e. U_ j e. A B ) /\ ( f ` k ) = z ) -> A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) |
| 50 |
|
2fveq3 |
|- ( l = k -> ( 2nd ` ( f ` l ) ) = ( 2nd ` ( f ` k ) ) ) |
| 51 |
|
id |
|- ( l = k -> l = k ) |
| 52 |
50 51
|
eqeq12d |
|- ( l = k -> ( ( 2nd ` ( f ` l ) ) = l <-> ( 2nd ` ( f ` k ) ) = k ) ) |
| 53 |
52
|
rspcva |
|- ( ( k e. U_ j e. A B /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) -> ( 2nd ` ( f ` k ) ) = k ) |
| 54 |
45 49 53
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) /\ k e. U_ j e. A B ) /\ ( f ` k ) = z ) -> ( 2nd ` ( f ` k ) ) = k ) |
| 55 |
44 54
|
eqtr3d |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) /\ k e. U_ j e. A B ) /\ ( f ` k ) = z ) -> ( 2nd ` z ) = k ) |
| 56 |
47
|
simpld |
|- ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) -> f : U_ j e. A B -1-1-onto-> ran f ) |
| 57 |
56
|
ad2antrr |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) /\ k e. U_ j e. A B ) /\ ( f ` k ) = z ) -> f : U_ j e. A B -1-1-onto-> ran f ) |
| 58 |
|
f1ocnvfv1 |
|- ( ( f : U_ j e. A B -1-1-onto-> ran f /\ k e. U_ j e. A B ) -> ( `' f ` ( f ` k ) ) = k ) |
| 59 |
57 45 58
|
syl2anc |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) /\ k e. U_ j e. A B ) /\ ( f ` k ) = z ) -> ( `' f ` ( f ` k ) ) = k ) |
| 60 |
43
|
fveq2d |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) /\ k e. U_ j e. A B ) /\ ( f ` k ) = z ) -> ( `' f ` ( f ` k ) ) = ( `' f ` z ) ) |
| 61 |
55 59 60
|
3eqtr2rd |
|- ( ( ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) /\ k e. U_ j e. A B ) /\ ( f ` k ) = z ) -> ( `' f ` z ) = ( 2nd ` z ) ) |
| 62 |
|
f1ofn |
|- ( f : U_ j e. A B -1-1-onto-> ran f -> f Fn U_ j e. A B ) |
| 63 |
56 62
|
syl |
|- ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) -> f Fn U_ j e. A B ) |
| 64 |
|
simpllr |
|- ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) -> z e. ran f ) |
| 65 |
|
fvelrnb |
|- ( f Fn U_ j e. A B -> ( z e. ran f <-> E. k e. U_ j e. A B ( f ` k ) = z ) ) |
| 66 |
65
|
biimpa |
|- ( ( f Fn U_ j e. A B /\ z e. ran f ) -> E. k e. U_ j e. A B ( f ` k ) = z ) |
| 67 |
63 64 66
|
syl2anc |
|- ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) -> E. k e. U_ j e. A B ( f ` k ) = z ) |
| 68 |
61 67
|
r19.29a |
|- ( ( ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) /\ j e. A ) /\ z e. ( { j } X. B ) ) -> ( `' f ` z ) = ( 2nd ` z ) ) |
| 69 |
|
simprr |
|- ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) -> ran f C_ U_ j e. A ( { j } X. B ) ) |
| 70 |
69
|
sselda |
|- ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) -> z e. U_ j e. A ( { j } X. B ) ) |
| 71 |
|
eliun |
|- ( z e. U_ j e. A ( { j } X. B ) <-> E. j e. A z e. ( { j } X. B ) ) |
| 72 |
70 71
|
sylib |
|- ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) -> E. j e. A z e. ( { j } X. B ) ) |
| 73 |
42 68 72
|
r19.29af |
|- ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. ran f ) -> ( `' f ` z ) = ( 2nd ` z ) ) |
| 74 |
|
nfcv |
|- F/_ j k |
| 75 |
74 30
|
nfel |
|- F/ j k e. U_ j e. A B |
| 76 |
28 75
|
nfan |
|- F/ j ( ph /\ k e. U_ j e. A B ) |
| 77 |
3
|
adantllr |
|- ( ( ( ( ph /\ k e. U_ j e. A B ) /\ j e. A ) /\ k e. B ) -> C e. ( 0 [,] +oo ) ) |
| 78 |
|
eliun |
|- ( k e. U_ j e. A B <-> E. j e. A k e. B ) |
| 79 |
78
|
biimpi |
|- ( k e. U_ j e. A B -> E. j e. A k e. B ) |
| 80 |
79
|
adantl |
|- ( ( ph /\ k e. U_ j e. A B ) -> E. j e. A k e. B ) |
| 81 |
76 77 80
|
r19.29af |
|- ( ( ph /\ k e. U_ j e. A B ) -> C e. ( 0 [,] +oo ) ) |
| 82 |
81
|
adantlr |
|- ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ k e. U_ j e. A B ) -> C e. ( 0 [,] +oo ) ) |
| 83 |
13 14 15 16 17 18 19 23 27 73 82
|
esumf1o |
|- ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) -> sum* k e. U_ j e. A B C = sum* z e. ran f [_ ( 2nd ` z ) / k ]_ C ) |
| 84 |
83
|
eqcomd |
|- ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) -> sum* z e. ran f [_ ( 2nd ` z ) / k ]_ C = sum* k e. U_ j e. A B C ) |
| 85 |
|
vsnex |
|- { j } e. _V |
| 86 |
85
|
a1i |
|- ( ( ph /\ j e. A ) -> { j } e. _V ) |
| 87 |
86 2
|
xpexd |
|- ( ( ph /\ j e. A ) -> ( { j } X. B ) e. _V ) |
| 88 |
87
|
ralrimiva |
|- ( ph -> A. j e. A ( { j } X. B ) e. _V ) |
| 89 |
|
iunexg |
|- ( ( A e. V /\ A. j e. A ( { j } X. B ) e. _V ) -> U_ j e. A ( { j } X. B ) e. _V ) |
| 90 |
1 88 89
|
syl2anc |
|- ( ph -> U_ j e. A ( { j } X. B ) e. _V ) |
| 91 |
90
|
adantr |
|- ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) -> U_ j e. A ( { j } X. B ) e. _V ) |
| 92 |
|
nfcv |
|- F/_ j z |
| 93 |
92 37
|
nfel |
|- F/ j z e. U_ j e. A ( { j } X. B ) |
| 94 |
28 93
|
nfan |
|- F/ j ( ph /\ z e. U_ j e. A ( { j } X. B ) ) |
| 95 |
|
nfcv |
|- F/_ j ( 2nd ` z ) |
| 96 |
|
nfcv |
|- F/_ j C |
| 97 |
95 96
|
nfcsbw |
|- F/_ j [_ ( 2nd ` z ) / k ]_ C |
| 98 |
|
nfcv |
|- F/_ j ( 0 [,] +oo ) |
| 99 |
97 98
|
nfel |
|- F/ j [_ ( 2nd ` z ) / k ]_ C e. ( 0 [,] +oo ) |
| 100 |
|
simprr |
|- ( ( ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) /\ j e. A ) /\ ( ( 1st ` z ) = j /\ ( 2nd ` z ) e. B ) ) -> ( 2nd ` z ) e. B ) |
| 101 |
|
simplll |
|- ( ( ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) /\ j e. A ) /\ ( ( 1st ` z ) = j /\ ( 2nd ` z ) e. B ) ) -> ph ) |
| 102 |
|
simplr |
|- ( ( ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) /\ j e. A ) /\ ( ( 1st ` z ) = j /\ ( 2nd ` z ) e. B ) ) -> j e. A ) |
| 103 |
3
|
ralrimiva |
|- ( ( ph /\ j e. A ) -> A. k e. B C e. ( 0 [,] +oo ) ) |
| 104 |
101 102 103
|
syl2anc |
|- ( ( ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) /\ j e. A ) /\ ( ( 1st ` z ) = j /\ ( 2nd ` z ) e. B ) ) -> A. k e. B C e. ( 0 [,] +oo ) ) |
| 105 |
|
rspcsbela |
|- ( ( ( 2nd ` z ) e. B /\ A. k e. B C e. ( 0 [,] +oo ) ) -> [_ ( 2nd ` z ) / k ]_ C e. ( 0 [,] +oo ) ) |
| 106 |
100 104 105
|
syl2anc |
|- ( ( ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) /\ j e. A ) /\ ( ( 1st ` z ) = j /\ ( 2nd ` z ) e. B ) ) -> [_ ( 2nd ` z ) / k ]_ C e. ( 0 [,] +oo ) ) |
| 107 |
|
xp1st |
|- ( z e. ( { j } X. B ) -> ( 1st ` z ) e. { j } ) |
| 108 |
|
elsni |
|- ( ( 1st ` z ) e. { j } -> ( 1st ` z ) = j ) |
| 109 |
107 108
|
syl |
|- ( z e. ( { j } X. B ) -> ( 1st ` z ) = j ) |
| 110 |
|
xp2nd |
|- ( z e. ( { j } X. B ) -> ( 2nd ` z ) e. B ) |
| 111 |
109 110
|
jca |
|- ( z e. ( { j } X. B ) -> ( ( 1st ` z ) = j /\ ( 2nd ` z ) e. B ) ) |
| 112 |
111
|
reximi |
|- ( E. j e. A z e. ( { j } X. B ) -> E. j e. A ( ( 1st ` z ) = j /\ ( 2nd ` z ) e. B ) ) |
| 113 |
71 112
|
sylbi |
|- ( z e. U_ j e. A ( { j } X. B ) -> E. j e. A ( ( 1st ` z ) = j /\ ( 2nd ` z ) e. B ) ) |
| 114 |
113
|
adantl |
|- ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) -> E. j e. A ( ( 1st ` z ) = j /\ ( 2nd ` z ) e. B ) ) |
| 115 |
94 99 106 114
|
r19.29af2 |
|- ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) -> [_ ( 2nd ` z ) / k ]_ C e. ( 0 [,] +oo ) ) |
| 116 |
115
|
adantlr |
|- ( ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) /\ z e. U_ j e. A ( { j } X. B ) ) -> [_ ( 2nd ` z ) / k ]_ C e. ( 0 [,] +oo ) ) |
| 117 |
|
simprr |
|- ( ( ph /\ ( f : U_ j e. A B -1-1-onto-> ran f /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) -> ran f C_ U_ j e. A ( { j } X. B ) ) |
| 118 |
117
|
adantrlr |
|- ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) -> ran f C_ U_ j e. A ( { j } X. B ) ) |
| 119 |
13 91 116 118
|
esummono |
|- ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) -> sum* z e. ran f [_ ( 2nd ` z ) / k ]_ C <_ sum* z e. U_ j e. A ( { j } X. B ) [_ ( 2nd ` z ) / k ]_ C ) |
| 120 |
84 119
|
eqbrtrrd |
|- ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) -> sum* k e. U_ j e. A B C <_ sum* z e. U_ j e. A ( { j } X. B ) [_ ( 2nd ` z ) / k ]_ C ) |
| 121 |
|
vex |
|- j e. _V |
| 122 |
|
vex |
|- k e. _V |
| 123 |
121 122
|
op2ndd |
|- ( z = <. j , k >. -> ( 2nd ` z ) = k ) |
| 124 |
123
|
eqcomd |
|- ( z = <. j , k >. -> k = ( 2nd ` z ) ) |
| 125 |
124 19
|
syl |
|- ( z = <. j , k >. -> C = [_ ( 2nd ` z ) / k ]_ C ) |
| 126 |
125
|
eqcomd |
|- ( z = <. j , k >. -> [_ ( 2nd ` z ) / k ]_ C = C ) |
| 127 |
3
|
anasss |
|- ( ( ph /\ ( j e. A /\ k e. B ) ) -> C e. ( 0 [,] +oo ) ) |
| 128 |
15 126 1 2 127
|
esum2d |
|- ( ph -> sum* j e. A sum* k e. B C = sum* z e. U_ j e. A ( { j } X. B ) [_ ( 2nd ` z ) / k ]_ C ) |
| 129 |
128
|
adantr |
|- ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) -> sum* j e. A sum* k e. B C = sum* z e. U_ j e. A ( { j } X. B ) [_ ( 2nd ` z ) / k ]_ C ) |
| 130 |
120 129
|
breqtrrd |
|- ( ( ph /\ ( ( f : U_ j e. A B -1-1-onto-> ran f /\ A. l e. U_ j e. A B ( 2nd ` ( f ` l ) ) = l ) /\ ran f C_ U_ j e. A ( { j } X. B ) ) ) -> sum* k e. U_ j e. A B C <_ sum* j e. A sum* k e. B C ) |
| 131 |
12 130
|
exlimddv |
|- ( ph -> sum* k e. U_ j e. A B C <_ sum* j e. A sum* k e. B C ) |