| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esum2d.0 |
|- F/_ k F |
| 2 |
|
esum2d.1 |
|- ( z = <. j , k >. -> F = C ) |
| 3 |
|
esum2d.2 |
|- ( ph -> A e. V ) |
| 4 |
|
esum2d.3 |
|- ( ( ph /\ j e. A ) -> B e. W ) |
| 5 |
|
esum2d.4 |
|- ( ( ph /\ ( j e. A /\ k e. B ) ) -> C e. ( 0 [,] +oo ) ) |
| 6 |
|
xrltso |
|- < Or RR* |
| 7 |
6
|
a1i |
|- ( ph -> < Or RR* ) |
| 8 |
|
nfv |
|- F/ c ph |
| 9 |
|
nfcv |
|- F/_ c s |
| 10 |
|
nfmpt1 |
|- F/_ c ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 11 |
10
|
nfrn |
|- F/_ c ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 12 |
9 11
|
nfel |
|- F/ c s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 13 |
8 12
|
nfan |
|- F/ c ( ph /\ s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) |
| 14 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
| 15 |
|
xrge0base |
|- ( 0 [,] +oo ) = ( Base ` ( RR*s |`s ( 0 [,] +oo ) ) ) |
| 16 |
|
xrge0cmn |
|- ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd |
| 17 |
16
|
a1i |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
| 18 |
|
simpr |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) |
| 19 |
18
|
elin2d |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> c e. Fin ) |
| 20 |
|
simpll |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ z e. c ) -> ph ) |
| 21 |
18
|
elin1d |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> c e. ~P U_ j e. A ( { j } X. B ) ) |
| 22 |
21
|
adantr |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ z e. c ) -> c e. ~P U_ j e. A ( { j } X. B ) ) |
| 23 |
|
vex |
|- c e. _V |
| 24 |
23
|
elpw |
|- ( c e. ~P U_ j e. A ( { j } X. B ) <-> c C_ U_ j e. A ( { j } X. B ) ) |
| 25 |
22 24
|
sylib |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ z e. c ) -> c C_ U_ j e. A ( { j } X. B ) ) |
| 26 |
|
simpr |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ z e. c ) -> z e. c ) |
| 27 |
25 26
|
sseldd |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ z e. c ) -> z e. U_ j e. A ( { j } X. B ) ) |
| 28 |
|
nfv |
|- F/ j ph |
| 29 |
|
nfcv |
|- F/_ j z |
| 30 |
|
nfiu1 |
|- F/_ j U_ j e. A ( { j } X. B ) |
| 31 |
29 30
|
nfel |
|- F/ j z e. U_ j e. A ( { j } X. B ) |
| 32 |
28 31
|
nfan |
|- F/ j ( ph /\ z e. U_ j e. A ( { j } X. B ) ) |
| 33 |
|
nfv |
|- F/ k ( ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) /\ j e. A ) /\ z e. ( { j } X. B ) ) |
| 34 |
|
nfcv |
|- F/_ k ( 0 [,] +oo ) |
| 35 |
1 34
|
nfel |
|- F/ k F e. ( 0 [,] +oo ) |
| 36 |
2
|
adantl |
|- ( ( ( ( ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) /\ j e. A ) /\ z e. ( { j } X. B ) ) /\ k e. B ) /\ z = <. j , k >. ) -> F = C ) |
| 37 |
|
simp-5l |
|- ( ( ( ( ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) /\ j e. A ) /\ z e. ( { j } X. B ) ) /\ k e. B ) /\ z = <. j , k >. ) -> ph ) |
| 38 |
|
simp-4r |
|- ( ( ( ( ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) /\ j e. A ) /\ z e. ( { j } X. B ) ) /\ k e. B ) /\ z = <. j , k >. ) -> j e. A ) |
| 39 |
|
simplr |
|- ( ( ( ( ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) /\ j e. A ) /\ z e. ( { j } X. B ) ) /\ k e. B ) /\ z = <. j , k >. ) -> k e. B ) |
| 40 |
37 38 39 5
|
syl12anc |
|- ( ( ( ( ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) /\ j e. A ) /\ z e. ( { j } X. B ) ) /\ k e. B ) /\ z = <. j , k >. ) -> C e. ( 0 [,] +oo ) ) |
| 41 |
36 40
|
eqeltrd |
|- ( ( ( ( ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) /\ j e. A ) /\ z e. ( { j } X. B ) ) /\ k e. B ) /\ z = <. j , k >. ) -> F e. ( 0 [,] +oo ) ) |
| 42 |
|
elsnxp |
|- ( j e. A -> ( z e. ( { j } X. B ) <-> E. k e. B z = <. j , k >. ) ) |
| 43 |
42
|
biimpa |
|- ( ( j e. A /\ z e. ( { j } X. B ) ) -> E. k e. B z = <. j , k >. ) |
| 44 |
43
|
adantll |
|- ( ( ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) /\ j e. A ) /\ z e. ( { j } X. B ) ) -> E. k e. B z = <. j , k >. ) |
| 45 |
33 35 41 44
|
r19.29af2 |
|- ( ( ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) /\ j e. A ) /\ z e. ( { j } X. B ) ) -> F e. ( 0 [,] +oo ) ) |
| 46 |
|
simpr |
|- ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) -> z e. U_ j e. A ( { j } X. B ) ) |
| 47 |
|
eliun |
|- ( z e. U_ j e. A ( { j } X. B ) <-> E. j e. A z e. ( { j } X. B ) ) |
| 48 |
46 47
|
sylib |
|- ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) -> E. j e. A z e. ( { j } X. B ) ) |
| 49 |
32 45 48
|
r19.29af |
|- ( ( ph /\ z e. U_ j e. A ( { j } X. B ) ) -> F e. ( 0 [,] +oo ) ) |
| 50 |
20 27 49
|
syl2anc |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ z e. c ) -> F e. ( 0 [,] +oo ) ) |
| 51 |
50
|
ralrimiva |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> A. z e. c F e. ( 0 [,] +oo ) ) |
| 52 |
15 17 19 51
|
gsummptcl |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) e. ( 0 [,] +oo ) ) |
| 53 |
14 52
|
sselid |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) e. RR* ) |
| 54 |
53
|
ralrimiva |
|- ( ph -> A. c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) e. RR* ) |
| 55 |
|
eqid |
|- ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) = ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 56 |
55
|
rnmptss |
|- ( A. c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) e. RR* -> ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) C_ RR* ) |
| 57 |
54 56
|
syl |
|- ( ph -> ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) C_ RR* ) |
| 58 |
57
|
ad3antrrr |
|- ( ( ( ( ph /\ s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) C_ RR* ) |
| 59 |
|
simpllr |
|- ( ( ( ( ph /\ s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) |
| 60 |
58 59
|
sseldd |
|- ( ( ( ( ph /\ s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> s e. RR* ) |
| 61 |
|
vsnex |
|- { j } e. _V |
| 62 |
|
xpexg |
|- ( ( { j } e. _V /\ B e. W ) -> ( { j } X. B ) e. _V ) |
| 63 |
61 4 62
|
sylancr |
|- ( ( ph /\ j e. A ) -> ( { j } X. B ) e. _V ) |
| 64 |
63
|
ralrimiva |
|- ( ph -> A. j e. A ( { j } X. B ) e. _V ) |
| 65 |
|
iunexg |
|- ( ( A e. V /\ A. j e. A ( { j } X. B ) e. _V ) -> U_ j e. A ( { j } X. B ) e. _V ) |
| 66 |
3 64 65
|
syl2anc |
|- ( ph -> U_ j e. A ( { j } X. B ) e. _V ) |
| 67 |
49
|
ralrimiva |
|- ( ph -> A. z e. U_ j e. A ( { j } X. B ) F e. ( 0 [,] +oo ) ) |
| 68 |
|
nfcv |
|- F/_ z U_ j e. A ( { j } X. B ) |
| 69 |
68
|
esumcl |
|- ( ( U_ j e. A ( { j } X. B ) e. _V /\ A. z e. U_ j e. A ( { j } X. B ) F e. ( 0 [,] +oo ) ) -> sum* z e. U_ j e. A ( { j } X. B ) F e. ( 0 [,] +oo ) ) |
| 70 |
66 67 69
|
syl2anc |
|- ( ph -> sum* z e. U_ j e. A ( { j } X. B ) F e. ( 0 [,] +oo ) ) |
| 71 |
14 70
|
sselid |
|- ( ph -> sum* z e. U_ j e. A ( { j } X. B ) F e. RR* ) |
| 72 |
71
|
ad3antrrr |
|- ( ( ( ( ph /\ s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> sum* z e. U_ j e. A ( { j } X. B ) F e. RR* ) |
| 73 |
|
simpr |
|- ( ( ( ( ph /\ s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 74 |
|
nfv |
|- F/ z ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) |
| 75 |
|
nfcv |
|- F/_ z c |
| 76 |
74 75 19 50
|
esumgsum |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> sum* z e. c F = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 77 |
66
|
adantr |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> U_ j e. A ( { j } X. B ) e. _V ) |
| 78 |
49
|
adantlr |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ z e. U_ j e. A ( { j } X. B ) ) -> F e. ( 0 [,] +oo ) ) |
| 79 |
21 24
|
sylib |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> c C_ U_ j e. A ( { j } X. B ) ) |
| 80 |
74 77 78 79
|
esummono |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> sum* z e. c F <_ sum* z e. U_ j e. A ( { j } X. B ) F ) |
| 81 |
76 80
|
eqbrtrrd |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) <_ sum* z e. U_ j e. A ( { j } X. B ) F ) |
| 82 |
81
|
adantlr |
|- ( ( ( ph /\ s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) <_ sum* z e. U_ j e. A ( { j } X. B ) F ) |
| 83 |
82
|
adantr |
|- ( ( ( ( ph /\ s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) <_ sum* z e. U_ j e. A ( { j } X. B ) F ) |
| 84 |
73 83
|
eqbrtrd |
|- ( ( ( ( ph /\ s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> s <_ sum* z e. U_ j e. A ( { j } X. B ) F ) |
| 85 |
|
xrlenlt |
|- ( ( s e. RR* /\ sum* z e. U_ j e. A ( { j } X. B ) F e. RR* ) -> ( s <_ sum* z e. U_ j e. A ( { j } X. B ) F <-> -. sum* z e. U_ j e. A ( { j } X. B ) F < s ) ) |
| 86 |
85
|
biimpa |
|- ( ( ( s e. RR* /\ sum* z e. U_ j e. A ( { j } X. B ) F e. RR* ) /\ s <_ sum* z e. U_ j e. A ( { j } X. B ) F ) -> -. sum* z e. U_ j e. A ( { j } X. B ) F < s ) |
| 87 |
60 72 84 86
|
syl21anc |
|- ( ( ( ( ph /\ s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> -. sum* z e. U_ j e. A ( { j } X. B ) F < s ) |
| 88 |
|
simpr |
|- ( ( ph /\ s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) -> s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) |
| 89 |
|
ovex |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) e. _V |
| 90 |
55 89
|
elrnmpti |
|- ( s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) <-> E. c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 91 |
88 90
|
sylib |
|- ( ( ph /\ s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) -> E. c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 92 |
13 87 91
|
r19.29af |
|- ( ( ph /\ s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) -> -. sum* z e. U_ j e. A ( { j } X. B ) F < s ) |
| 93 |
92
|
ralrimiva |
|- ( ph -> A. s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -. sum* z e. U_ j e. A ( { j } X. B ) F < s ) |
| 94 |
|
nfv |
|- F/ c ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) |
| 95 |
|
nfv |
|- F/ c s < t |
| 96 |
11 95
|
nfrexw |
|- F/ c E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t |
| 97 |
76
|
adantlr |
|- ( ( ( ph /\ s e. RR* ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> sum* z e. c F = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 98 |
97
|
adantlr |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> sum* z e. c F = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 99 |
98
|
adantr |
|- ( ( ( ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s < sum* z e. c F ) -> sum* z e. c F = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 100 |
|
simplr |
|- ( ( ( ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s < sum* z e. c F ) -> c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) |
| 101 |
89
|
a1i |
|- ( ( ( ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s < sum* z e. c F ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) e. _V ) |
| 102 |
55
|
elrnmpt1 |
|- ( ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) /\ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) e. _V ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) |
| 103 |
100 101 102
|
syl2anc |
|- ( ( ( ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s < sum* z e. c F ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) |
| 104 |
99 103
|
eqeltrd |
|- ( ( ( ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s < sum* z e. c F ) -> sum* z e. c F e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) |
| 105 |
|
simpr |
|- ( ( ( ( ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s < sum* z e. c F ) /\ t = sum* z e. c F ) -> t = sum* z e. c F ) |
| 106 |
105
|
breq2d |
|- ( ( ( ( ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s < sum* z e. c F ) /\ t = sum* z e. c F ) -> ( s < t <-> s < sum* z e. c F ) ) |
| 107 |
|
simpr |
|- ( ( ( ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s < sum* z e. c F ) -> s < sum* z e. c F ) |
| 108 |
104 106 107
|
rspcedvd |
|- ( ( ( ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ s < sum* z e. c F ) -> E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t ) |
| 109 |
|
nfv |
|- F/ z ( ph /\ s e. RR* ) |
| 110 |
|
nfcv |
|- F/_ z s |
| 111 |
|
nfcv |
|- F/_ z < |
| 112 |
68
|
nfesum1 |
|- F/_ z sum* z e. U_ j e. A ( { j } X. B ) F |
| 113 |
110 111 112
|
nfbr |
|- F/ z s < sum* z e. U_ j e. A ( { j } X. B ) F |
| 114 |
109 113
|
nfan |
|- F/ z ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) |
| 115 |
66
|
ad2antrr |
|- ( ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) -> U_ j e. A ( { j } X. B ) e. _V ) |
| 116 |
49
|
3ad2antr3 |
|- ( ( ph /\ ( s e. RR* /\ s < sum* z e. U_ j e. A ( { j } X. B ) F /\ z e. U_ j e. A ( { j } X. B ) ) ) -> F e. ( 0 [,] +oo ) ) |
| 117 |
116
|
3anassrs |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) /\ z e. U_ j e. A ( { j } X. B ) ) -> F e. ( 0 [,] +oo ) ) |
| 118 |
|
simplr |
|- ( ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) -> s e. RR* ) |
| 119 |
|
simpr |
|- ( ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) -> s < sum* z e. U_ j e. A ( { j } X. B ) F ) |
| 120 |
114 115 117 118 119
|
esumlub |
|- ( ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) -> E. c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) s < sum* z e. c F ) |
| 121 |
94 96 108 120
|
r19.29af2 |
|- ( ( ( ph /\ s e. RR* ) /\ s < sum* z e. U_ j e. A ( { j } X. B ) F ) -> E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t ) |
| 122 |
121
|
ex |
|- ( ( ph /\ s e. RR* ) -> ( s < sum* z e. U_ j e. A ( { j } X. B ) F -> E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t ) ) |
| 123 |
122
|
ralrimiva |
|- ( ph -> A. s e. RR* ( s < sum* z e. U_ j e. A ( { j } X. B ) F -> E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t ) ) |
| 124 |
93 123
|
jca |
|- ( ph -> ( A. s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -. sum* z e. U_ j e. A ( { j } X. B ) F < s /\ A. s e. RR* ( s < sum* z e. U_ j e. A ( { j } X. B ) F -> E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t ) ) ) |
| 125 |
|
simpr |
|- ( ( ph /\ r = sum* z e. U_ j e. A ( { j } X. B ) F ) -> r = sum* z e. U_ j e. A ( { j } X. B ) F ) |
| 126 |
125
|
breq1d |
|- ( ( ph /\ r = sum* z e. U_ j e. A ( { j } X. B ) F ) -> ( r < s <-> sum* z e. U_ j e. A ( { j } X. B ) F < s ) ) |
| 127 |
126
|
notbid |
|- ( ( ph /\ r = sum* z e. U_ j e. A ( { j } X. B ) F ) -> ( -. r < s <-> -. sum* z e. U_ j e. A ( { j } X. B ) F < s ) ) |
| 128 |
127
|
ralbidv |
|- ( ( ph /\ r = sum* z e. U_ j e. A ( { j } X. B ) F ) -> ( A. s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -. r < s <-> A. s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -. sum* z e. U_ j e. A ( { j } X. B ) F < s ) ) |
| 129 |
125
|
breq2d |
|- ( ( ph /\ r = sum* z e. U_ j e. A ( { j } X. B ) F ) -> ( s < r <-> s < sum* z e. U_ j e. A ( { j } X. B ) F ) ) |
| 130 |
129
|
imbi1d |
|- ( ( ph /\ r = sum* z e. U_ j e. A ( { j } X. B ) F ) -> ( ( s < r -> E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t ) <-> ( s < sum* z e. U_ j e. A ( { j } X. B ) F -> E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t ) ) ) |
| 131 |
130
|
ralbidv |
|- ( ( ph /\ r = sum* z e. U_ j e. A ( { j } X. B ) F ) -> ( A. s e. RR* ( s < r -> E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t ) <-> A. s e. RR* ( s < sum* z e. U_ j e. A ( { j } X. B ) F -> E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t ) ) ) |
| 132 |
128 131
|
anbi12d |
|- ( ( ph /\ r = sum* z e. U_ j e. A ( { j } X. B ) F ) -> ( ( A. s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -. r < s /\ A. s e. RR* ( s < r -> E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t ) ) <-> ( A. s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -. sum* z e. U_ j e. A ( { j } X. B ) F < s /\ A. s e. RR* ( s < sum* z e. U_ j e. A ( { j } X. B ) F -> E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t ) ) ) ) |
| 133 |
71 132
|
rspcedv |
|- ( ph -> ( ( A. s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -. sum* z e. U_ j e. A ( { j } X. B ) F < s /\ A. s e. RR* ( s < sum* z e. U_ j e. A ( { j } X. B ) F -> E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t ) ) -> E. r e. RR* ( A. s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -. r < s /\ A. s e. RR* ( s < r -> E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t ) ) ) ) |
| 134 |
124 133
|
mpd |
|- ( ph -> E. r e. RR* ( A. s e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -. r < s /\ A. s e. RR* ( s < r -> E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t ) ) ) |
| 135 |
7 134
|
supcl |
|- ( ph -> sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) e. RR* ) |
| 136 |
|
nfv |
|- F/ a ph |
| 137 |
|
nfcv |
|- F/_ a s |
| 138 |
|
nfmpt1 |
|- F/_ a ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) |
| 139 |
138
|
nfrn |
|- F/_ a ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) |
| 140 |
137 139
|
nfel |
|- F/ a s e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) |
| 141 |
136 140
|
nfan |
|- F/ a ( ph /\ s e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) ) |
| 142 |
|
simpr |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> a e. ( ~P A i^i Fin ) ) |
| 143 |
|
simpll |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ j e. a ) -> ph ) |
| 144 |
142
|
elin1d |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> a e. ~P A ) |
| 145 |
|
elpwi |
|- ( a e. ~P A -> a C_ A ) |
| 146 |
144 145
|
syl |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> a C_ A ) |
| 147 |
146
|
sselda |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ j e. a ) -> j e. A ) |
| 148 |
143 147 4
|
syl2anc |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ j e. a ) -> B e. W ) |
| 149 |
143
|
adantrr |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ ( j e. a /\ k e. B ) ) -> ph ) |
| 150 |
147
|
adantrr |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ ( j e. a /\ k e. B ) ) -> j e. A ) |
| 151 |
|
simprr |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ ( j e. a /\ k e. B ) ) -> k e. B ) |
| 152 |
149 150 151 5
|
syl12anc |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ ( j e. a /\ k e. B ) ) -> C e. ( 0 [,] +oo ) ) |
| 153 |
142
|
elin2d |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> a e. Fin ) |
| 154 |
1 2 142 148 152 153
|
esum2dlem |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> sum* j e. a sum* k e. B C = sum* z e. U_ j e. a ( { j } X. B ) F ) |
| 155 |
|
nfv |
|- F/ j ( ph /\ a e. ( ~P A i^i Fin ) ) |
| 156 |
|
nfcv |
|- F/_ j a |
| 157 |
5
|
anassrs |
|- ( ( ( ph /\ j e. A ) /\ k e. B ) -> C e. ( 0 [,] +oo ) ) |
| 158 |
157
|
ralrimiva |
|- ( ( ph /\ j e. A ) -> A. k e. B C e. ( 0 [,] +oo ) ) |
| 159 |
|
nfcv |
|- F/_ k B |
| 160 |
159
|
esumcl |
|- ( ( B e. W /\ A. k e. B C e. ( 0 [,] +oo ) ) -> sum* k e. B C e. ( 0 [,] +oo ) ) |
| 161 |
4 158 160
|
syl2anc |
|- ( ( ph /\ j e. A ) -> sum* k e. B C e. ( 0 [,] +oo ) ) |
| 162 |
143 147 161
|
syl2anc |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ j e. a ) -> sum* k e. B C e. ( 0 [,] +oo ) ) |
| 163 |
155 156 153 162
|
esumgsum |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> sum* j e. a sum* k e. B C = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) |
| 164 |
154 163
|
eqtr3d |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> sum* z e. U_ j e. a ( { j } X. B ) F = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) |
| 165 |
|
nfv |
|- F/ z ( ph /\ a e. ( ~P A i^i Fin ) ) |
| 166 |
66
|
adantr |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> U_ j e. A ( { j } X. B ) e. _V ) |
| 167 |
49
|
adantlr |
|- ( ( ( ph /\ a e. ( ~P A i^i Fin ) ) /\ z e. U_ j e. A ( { j } X. B ) ) -> F e. ( 0 [,] +oo ) ) |
| 168 |
|
iunss1 |
|- ( a C_ A -> U_ j e. a ( { j } X. B ) C_ U_ j e. A ( { j } X. B ) ) |
| 169 |
146 168
|
syl |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> U_ j e. a ( { j } X. B ) C_ U_ j e. A ( { j } X. B ) ) |
| 170 |
165 166 167 169
|
esummono |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> sum* z e. U_ j e. a ( { j } X. B ) F <_ sum* z e. U_ j e. A ( { j } X. B ) F ) |
| 171 |
164 170
|
eqbrtrrd |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) <_ sum* z e. U_ j e. A ( { j } X. B ) F ) |
| 172 |
16
|
a1i |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
| 173 |
162
|
ralrimiva |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> A. j e. a sum* k e. B C e. ( 0 [,] +oo ) ) |
| 174 |
15 172 153 173
|
gsummptcl |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) e. ( 0 [,] +oo ) ) |
| 175 |
14 174
|
sselid |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) e. RR* ) |
| 176 |
71
|
adantr |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> sum* z e. U_ j e. A ( { j } X. B ) F e. RR* ) |
| 177 |
|
xrlenlt |
|- ( ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) e. RR* /\ sum* z e. U_ j e. A ( { j } X. B ) F e. RR* ) -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) <_ sum* z e. U_ j e. A ( { j } X. B ) F <-> -. sum* z e. U_ j e. A ( { j } X. B ) F < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) ) |
| 178 |
175 176 177
|
syl2anc |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) <_ sum* z e. U_ j e. A ( { j } X. B ) F <-> -. sum* z e. U_ j e. A ( { j } X. B ) F < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) ) |
| 179 |
171 178
|
mpbid |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> -. sum* z e. U_ j e. A ( { j } X. B ) F < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) |
| 180 |
|
nfv |
|- F/ z ph |
| 181 |
|
eqidd |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 182 |
180 68 66 49 181
|
esumval |
|- ( ph -> sum* z e. U_ j e. A ( { j } X. B ) F = sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) |
| 183 |
182
|
adantr |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> sum* z e. U_ j e. A ( { j } X. B ) F = sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) |
| 184 |
183
|
breq1d |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( sum* z e. U_ j e. A ( { j } X. B ) F < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) <-> sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) ) |
| 185 |
179 184
|
mtbid |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> -. sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) |
| 186 |
185
|
adantlr |
|- ( ( ( ph /\ s e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) ) /\ a e. ( ~P A i^i Fin ) ) -> -. sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) |
| 187 |
186
|
adantr |
|- ( ( ( ( ph /\ s e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) ) /\ a e. ( ~P A i^i Fin ) ) /\ s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) -> -. sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) |
| 188 |
|
simpr |
|- ( ( ( ( ph /\ s e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) ) /\ a e. ( ~P A i^i Fin ) ) /\ s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) -> s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) |
| 189 |
188
|
breq2d |
|- ( ( ( ( ph /\ s e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) ) /\ a e. ( ~P A i^i Fin ) ) /\ s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) -> ( sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) < s <-> sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) ) |
| 190 |
189
|
notbid |
|- ( ( ( ( ph /\ s e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) ) /\ a e. ( ~P A i^i Fin ) ) /\ s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) -> ( -. sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) < s <-> -. sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) ) |
| 191 |
187 190
|
mpbird |
|- ( ( ( ( ph /\ s e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) ) /\ a e. ( ~P A i^i Fin ) ) /\ s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) -> -. sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) < s ) |
| 192 |
|
eqid |
|- ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) = ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) |
| 193 |
|
ovex |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) e. _V |
| 194 |
192 193
|
elrnmpti |
|- ( s e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) <-> E. a e. ( ~P A i^i Fin ) s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) |
| 195 |
194
|
biimpi |
|- ( s e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) -> E. a e. ( ~P A i^i Fin ) s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) |
| 196 |
195
|
adantl |
|- ( ( ph /\ s e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) ) -> E. a e. ( ~P A i^i Fin ) s = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) |
| 197 |
141 191 196
|
r19.29af |
|- ( ( ph /\ s e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) ) -> -. sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) < s ) |
| 198 |
9
|
nfel1 |
|- F/ c s e. RR* |
| 199 |
|
nfcv |
|- F/_ c < |
| 200 |
|
nfcv |
|- F/_ c RR* |
| 201 |
11 200 199
|
nfsup |
|- F/_ c sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) |
| 202 |
9 199 201
|
nfbr |
|- F/ c s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) |
| 203 |
198 202
|
nfan |
|- F/ c ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) |
| 204 |
8 203
|
nfan |
|- F/ c ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) |
| 205 |
|
nfcv |
|- F/_ c u |
| 206 |
205 11
|
nfel |
|- F/ c u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 207 |
204 206
|
nfan |
|- F/ c ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) |
| 208 |
|
nfv |
|- F/ c s < u |
| 209 |
207 208
|
nfan |
|- F/ c ( ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ s < u ) |
| 210 |
|
simp-5l |
|- ( ( ( ( ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ s < u ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> ph ) |
| 211 |
|
simpr1l |
|- ( ( ph /\ ( ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ ( s < u /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) /\ u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) ) -> s e. RR* ) |
| 212 |
211
|
3anassrs |
|- ( ( ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ ( s < u /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) /\ u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) -> s e. RR* ) |
| 213 |
212
|
3anassrs |
|- ( ( ( ( ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ s < u ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> s e. RR* ) |
| 214 |
210 213
|
jca |
|- ( ( ( ( ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ s < u ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> ( ph /\ s e. RR* ) ) |
| 215 |
|
simpr1r |
|- ( ( ph /\ ( ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ ( s < u /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) /\ u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) ) -> s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) |
| 216 |
215
|
3anassrs |
|- ( ( ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ ( s < u /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) /\ u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) -> s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) |
| 217 |
216
|
3anassrs |
|- ( ( ( ( ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ s < u ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) |
| 218 |
214 217
|
jca |
|- ( ( ( ( ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ s < u ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> ( ( ph /\ s e. RR* ) /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) |
| 219 |
|
simpllr |
|- ( ( ( ( ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ s < u ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> s < u ) |
| 220 |
|
simpr |
|- ( ( ( ( ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ s < u ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 221 |
219 220
|
breqtrd |
|- ( ( ( ( ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ s < u ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 222 |
|
simplr |
|- ( ( ( ( ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ s < u ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) |
| 223 |
|
simpr |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) |
| 224 |
223
|
elin1d |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> c e. ~P U_ j e. A ( { j } X. B ) ) |
| 225 |
|
elpwi |
|- ( c e. ~P U_ j e. A ( { j } X. B ) -> c C_ U_ j e. A ( { j } X. B ) ) |
| 226 |
|
dmss |
|- ( c C_ U_ j e. A ( { j } X. B ) -> dom c C_ dom U_ j e. A ( { j } X. B ) ) |
| 227 |
|
dmiun |
|- dom U_ j e. A ( { j } X. B ) = U_ j e. A dom ( { j } X. B ) |
| 228 |
226 227
|
sseqtrdi |
|- ( c C_ U_ j e. A ( { j } X. B ) -> dom c C_ U_ j e. A dom ( { j } X. B ) ) |
| 229 |
|
dmxpss |
|- dom ( { j } X. B ) C_ { j } |
| 230 |
229
|
a1i |
|- ( j e. A -> dom ( { j } X. B ) C_ { j } ) |
| 231 |
|
snssi |
|- ( j e. A -> { j } C_ A ) |
| 232 |
230 231
|
sstrd |
|- ( j e. A -> dom ( { j } X. B ) C_ A ) |
| 233 |
232
|
rgen |
|- A. j e. A dom ( { j } X. B ) C_ A |
| 234 |
|
iunss |
|- ( U_ j e. A dom ( { j } X. B ) C_ A <-> A. j e. A dom ( { j } X. B ) C_ A ) |
| 235 |
233 234
|
mpbir |
|- U_ j e. A dom ( { j } X. B ) C_ A |
| 236 |
228 235
|
sstrdi |
|- ( c C_ U_ j e. A ( { j } X. B ) -> dom c C_ A ) |
| 237 |
23
|
dmex |
|- dom c e. _V |
| 238 |
237
|
elpw |
|- ( dom c e. ~P A <-> dom c C_ A ) |
| 239 |
236 238
|
sylibr |
|- ( c C_ U_ j e. A ( { j } X. B ) -> dom c e. ~P A ) |
| 240 |
224 225 239
|
3syl |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> dom c e. ~P A ) |
| 241 |
223
|
elin2d |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> c e. Fin ) |
| 242 |
|
dmfi |
|- ( c e. Fin -> dom c e. Fin ) |
| 243 |
241 242
|
syl |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> dom c e. Fin ) |
| 244 |
240 243
|
elind |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> dom c e. ( ~P A i^i Fin ) ) |
| 245 |
|
ovex |
|- ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) e. _V |
| 246 |
245
|
a1i |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) e. _V ) |
| 247 |
|
mpteq1 |
|- ( a = dom c -> ( j e. a |-> sum* k e. B C ) = ( j e. dom c |-> sum* k e. B C ) ) |
| 248 |
247
|
oveq2d |
|- ( a = dom c -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) ) |
| 249 |
192 248
|
elrnmpt1s |
|- ( ( dom c e. ( ~P A i^i Fin ) /\ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) e. _V ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) ) |
| 250 |
244 246 249
|
syl2anc |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) ) |
| 251 |
|
simpr |
|- ( ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ t = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) ) -> t = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) ) |
| 252 |
251
|
breq2d |
|- ( ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ t = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) ) -> ( s < t <-> s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) ) ) |
| 253 |
|
simpllr |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> s e. RR* ) |
| 254 |
16
|
a1i |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( RR*s |`s ( 0 [,] +oo ) ) e. CMnd ) |
| 255 |
|
nfcv |
|- F/_ z ( RR*s |`s ( 0 [,] +oo ) ) |
| 256 |
|
nfcv |
|- F/_ z gsum |
| 257 |
|
nfmpt1 |
|- F/_ z ( z e. c |-> F ) |
| 258 |
255 256 257
|
nfov |
|- F/_ z ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) |
| 259 |
110 111 258
|
nfbr |
|- F/ z s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) |
| 260 |
109 259
|
nfan |
|- F/ z ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 261 |
|
nfv |
|- F/ z c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |
| 262 |
260 261
|
nfan |
|- F/ z ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) |
| 263 |
|
simp-4l |
|- ( ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ z e. c ) -> ph ) |
| 264 |
224 225
|
syl |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> c C_ U_ j e. A ( { j } X. B ) ) |
| 265 |
264
|
sselda |
|- ( ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ z e. c ) -> z e. U_ j e. A ( { j } X. B ) ) |
| 266 |
263 265 49
|
syl2anc |
|- ( ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ z e. c ) -> F e. ( 0 [,] +oo ) ) |
| 267 |
266
|
ex |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( z e. c -> F e. ( 0 [,] +oo ) ) ) |
| 268 |
262 267
|
ralrimi |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> A. z e. c F e. ( 0 [,] +oo ) ) |
| 269 |
15 254 241 268
|
gsummptcl |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) e. ( 0 [,] +oo ) ) |
| 270 |
14 269
|
sselid |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) e. RR* ) |
| 271 |
|
nfv |
|- F/ j ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 272 |
|
nfcv |
|- F/_ j c |
| 273 |
30
|
nfpw |
|- F/_ j ~P U_ j e. A ( { j } X. B ) |
| 274 |
|
nfcv |
|- F/_ j Fin |
| 275 |
273 274
|
nfin |
|- F/_ j ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |
| 276 |
272 275
|
nfel |
|- F/ j c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |
| 277 |
271 276
|
nfan |
|- F/ j ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) |
| 278 |
|
simpll |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) -> ph ) |
| 279 |
79 236
|
syl |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> dom c C_ A ) |
| 280 |
279
|
sselda |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) -> j e. A ) |
| 281 |
278 280 161
|
syl2anc |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) -> sum* k e. B C e. ( 0 [,] +oo ) ) |
| 282 |
281
|
adantllr |
|- ( ( ( ( ph /\ s e. RR* ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) -> sum* k e. B C e. ( 0 [,] +oo ) ) |
| 283 |
282
|
adantllr |
|- ( ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) -> sum* k e. B C e. ( 0 [,] +oo ) ) |
| 284 |
283
|
ex |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( j e. dom c -> sum* k e. B C e. ( 0 [,] +oo ) ) ) |
| 285 |
277 284
|
ralrimi |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> A. j e. dom c sum* k e. B C e. ( 0 [,] +oo ) ) |
| 286 |
15 254 243 285
|
gsummptcl |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) e. ( 0 [,] +oo ) ) |
| 287 |
14 286
|
sselid |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) e. RR* ) |
| 288 |
|
simplr |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 289 |
28 276
|
nfan |
|- F/ j ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) |
| 290 |
|
id |
|- ( c C_ U_ j e. A ( { j } X. B ) -> c C_ U_ j e. A ( { j } X. B ) ) |
| 291 |
|
xpss |
|- ( { j } X. B ) C_ ( _V X. _V ) |
| 292 |
291
|
rgenw |
|- A. j e. A ( { j } X. B ) C_ ( _V X. _V ) |
| 293 |
|
iunss |
|- ( U_ j e. A ( { j } X. B ) C_ ( _V X. _V ) <-> A. j e. A ( { j } X. B ) C_ ( _V X. _V ) ) |
| 294 |
292 293
|
mpbir |
|- U_ j e. A ( { j } X. B ) C_ ( _V X. _V ) |
| 295 |
294
|
a1i |
|- ( c C_ U_ j e. A ( { j } X. B ) -> U_ j e. A ( { j } X. B ) C_ ( _V X. _V ) ) |
| 296 |
290 295
|
sstrd |
|- ( c C_ U_ j e. A ( { j } X. B ) -> c C_ ( _V X. _V ) ) |
| 297 |
79 296
|
syl |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> c C_ ( _V X. _V ) ) |
| 298 |
|
df-rel |
|- ( Rel c <-> c C_ ( _V X. _V ) ) |
| 299 |
297 298
|
sylibr |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> Rel c ) |
| 300 |
1 289 15 2 299 19 17 50
|
gsummpt2d |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( c " { j } ) |-> C ) ) ) ) ) |
| 301 |
|
nfcv |
|- F/_ j dom c |
| 302 |
237
|
a1i |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> dom c e. _V ) |
| 303 |
278
|
adantr |
|- ( ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) /\ k e. ( c " { j } ) ) -> ph ) |
| 304 |
280
|
adantr |
|- ( ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) /\ k e. ( c " { j } ) ) -> j e. A ) |
| 305 |
79
|
adantr |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) -> c C_ U_ j e. A ( { j } X. B ) ) |
| 306 |
|
imass1 |
|- ( c C_ U_ j e. A ( { j } X. B ) -> ( c " { j } ) C_ ( U_ j e. A ( { j } X. B ) " { j } ) ) |
| 307 |
305 306
|
syl |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) -> ( c " { j } ) C_ ( U_ j e. A ( { j } X. B ) " { j } ) ) |
| 308 |
3 4
|
iunsnima |
|- ( ( ph /\ j e. A ) -> ( U_ j e. A ( { j } X. B ) " { j } ) = B ) |
| 309 |
278 280 308
|
syl2anc |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) -> ( U_ j e. A ( { j } X. B ) " { j } ) = B ) |
| 310 |
307 309
|
sseqtrd |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) -> ( c " { j } ) C_ B ) |
| 311 |
310
|
sselda |
|- ( ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) /\ k e. ( c " { j } ) ) -> k e. B ) |
| 312 |
303 304 311 5
|
syl12anc |
|- ( ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) /\ k e. ( c " { j } ) ) -> C e. ( 0 [,] +oo ) ) |
| 313 |
312
|
ralrimiva |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) -> A. k e. ( c " { j } ) C e. ( 0 [,] +oo ) ) |
| 314 |
|
imaexg |
|- ( c e. _V -> ( c " { j } ) e. _V ) |
| 315 |
23 314
|
ax-mp |
|- ( c " { j } ) e. _V |
| 316 |
|
nfcv |
|- F/_ k ( c " { j } ) |
| 317 |
316
|
esumcl |
|- ( ( ( c " { j } ) e. _V /\ A. k e. ( c " { j } ) C e. ( 0 [,] +oo ) ) -> sum* k e. ( c " { j } ) C e. ( 0 [,] +oo ) ) |
| 318 |
315 317
|
mpan |
|- ( A. k e. ( c " { j } ) C e. ( 0 [,] +oo ) -> sum* k e. ( c " { j } ) C e. ( 0 [,] +oo ) ) |
| 319 |
313 318
|
syl |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) -> sum* k e. ( c " { j } ) C e. ( 0 [,] +oo ) ) |
| 320 |
|
nfv |
|- F/ k ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) |
| 321 |
278 280 4
|
syl2anc |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) -> B e. W ) |
| 322 |
278
|
adantr |
|- ( ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) /\ k e. B ) -> ph ) |
| 323 |
280
|
adantr |
|- ( ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) /\ k e. B ) -> j e. A ) |
| 324 |
|
simpr |
|- ( ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) /\ k e. B ) -> k e. B ) |
| 325 |
322 323 324 5
|
syl12anc |
|- ( ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) /\ k e. B ) -> C e. ( 0 [,] +oo ) ) |
| 326 |
320 321 325 310
|
esummono |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) -> sum* k e. ( c " { j } ) C <_ sum* k e. B C ) |
| 327 |
289 301 302 319 281 326
|
esumlef |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> sum* j e. dom c sum* k e. ( c " { j } ) C <_ sum* j e. dom c sum* k e. B C ) |
| 328 |
19 242
|
syl |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> dom c e. Fin ) |
| 329 |
289 301 328 319
|
esumgsum |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> sum* j e. dom c sum* k e. ( c " { j } ) C = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. ( c " { j } ) C ) ) ) |
| 330 |
19
|
adantr |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) -> c e. Fin ) |
| 331 |
|
imafi2 |
|- ( c e. Fin -> ( c " { j } ) e. Fin ) |
| 332 |
330 331
|
syl |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) -> ( c " { j } ) e. Fin ) |
| 333 |
320 316 332 312
|
esumgsum |
|- ( ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ j e. dom c ) -> sum* k e. ( c " { j } ) C = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( c " { j } ) |-> C ) ) ) |
| 334 |
289 333
|
mpteq2da |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( j e. dom c |-> sum* k e. ( c " { j } ) C ) = ( j e. dom c |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( c " { j } ) |-> C ) ) ) ) |
| 335 |
334
|
oveq2d |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. ( c " { j } ) C ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( c " { j } ) |-> C ) ) ) ) ) |
| 336 |
329 335
|
eqtrd |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> sum* j e. dom c sum* k e. ( c " { j } ) C = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( c " { j } ) |-> C ) ) ) ) ) |
| 337 |
289 301 328 281
|
esumgsum |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> sum* j e. dom c sum* k e. B C = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) ) |
| 338 |
327 336 337
|
3brtr3d |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( k e. ( c " { j } ) |-> C ) ) ) ) <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) ) |
| 339 |
300 338
|
eqbrtrd |
|- ( ( ph /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) ) |
| 340 |
339
|
adantlr |
|- ( ( ( ph /\ s e. RR* ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) ) |
| 341 |
340
|
adantlr |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) <_ ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) ) |
| 342 |
253 270 287 288 341
|
xrltletrd |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. dom c |-> sum* k e. B C ) ) ) |
| 343 |
250 252 342
|
rspcedvd |
|- ( ( ( ( ph /\ s e. RR* ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> E. t e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) s < t ) |
| 344 |
343
|
adantllr |
|- ( ( ( ( ( ph /\ s e. RR* ) /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) /\ s < ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) -> E. t e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) s < t ) |
| 345 |
218 221 222 344
|
syl21anc |
|- ( ( ( ( ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ s < u ) /\ c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) ) /\ u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> E. t e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) s < t ) |
| 346 |
55 89
|
elrnmpti |
|- ( u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) <-> E. c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 347 |
346
|
biimpi |
|- ( u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) -> E. c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 348 |
347
|
ad2antlr |
|- ( ( ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ s < u ) -> E. c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) u = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) |
| 349 |
209 345 348
|
r19.29af |
|- ( ( ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) /\ u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) ) /\ s < u ) -> E. t e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) s < t ) |
| 350 |
7 134
|
suplub |
|- ( ph -> ( ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) -> E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t ) ) |
| 351 |
350
|
imp |
|- ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) -> E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t ) |
| 352 |
|
breq2 |
|- ( t = u -> ( s < t <-> s < u ) ) |
| 353 |
352
|
cbvrexvw |
|- ( E. t e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < t <-> E. u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < u ) |
| 354 |
351 353
|
sylib |
|- ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) -> E. u e. ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) s < u ) |
| 355 |
349 354
|
r19.29a |
|- ( ( ph /\ ( s e. RR* /\ s < sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) ) -> E. t e. ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) s < t ) |
| 356 |
7 135 197 355
|
eqsupd |
|- ( ph -> sup ( ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) , RR* , < ) = sup ( ran ( c e. ( ~P U_ j e. A ( { j } X. B ) i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( z e. c |-> F ) ) ) , RR* , < ) ) |
| 357 |
|
nfcv |
|- F/_ j A |
| 358 |
|
eqidd |
|- ( ( ph /\ a e. ( ~P A i^i Fin ) ) -> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) = ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) |
| 359 |
28 357 3 161 358
|
esumval |
|- ( ph -> sum* j e. A sum* k e. B C = sup ( ran ( a e. ( ~P A i^i Fin ) |-> ( ( RR*s |`s ( 0 [,] +oo ) ) gsum ( j e. a |-> sum* k e. B C ) ) ) , RR* , < ) ) |
| 360 |
356 359 182
|
3eqtr4d |
|- ( ph -> sum* j e. A sum* k e. B C = sum* z e. U_ j e. A ( { j } X. B ) F ) |