Description: Bound-variable hypothesis builder for extended sum. (Contributed by Thierry Arnoux, 19-Oct-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | nfesum1.1 | |- F/_ k A |
|
Assertion | nfesum1 | |- F/_ k sum* k e. A B |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfesum1.1 | |- F/_ k A |
|
2 | df-esum | |- sum* k e. A B = U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) |
|
3 | nfcv | |- F/_ k ( RR*s |`s ( 0 [,] +oo ) ) |
|
4 | nfcv | |- F/_ k tsums |
|
5 | nfmpt1 | |- F/_ k ( k e. A |-> B ) |
|
6 | 3 4 5 | nfov | |- F/_ k ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) |
7 | 6 | nfuni | |- F/_ k U. ( ( RR*s |`s ( 0 [,] +oo ) ) tsums ( k e. A |-> B ) ) |
8 | 2 7 | nfcxfr | |- F/_ k sum* k e. A B |