Metamath Proof Explorer


Theorem esumiun

Description: Sum over a nonnecessarily disjoint indexed union. The inequality is strict in the case where the sets B(x) overlap. (Contributed by Thierry Arnoux, 21-Sep-2019)

Ref Expression
Hypotheses esumiun.0 ( 𝜑𝐴𝑉 )
esumiun.1 ( ( 𝜑𝑗𝐴 ) → 𝐵𝑊 )
esumiun.2 ( ( ( 𝜑𝑗𝐴 ) ∧ 𝑘𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
Assertion esumiun ( 𝜑 → Σ* 𝑘 𝑗𝐴 𝐵 𝐶 ≤ Σ* 𝑗𝐴 Σ* 𝑘𝐵 𝐶 )

Proof

Step Hyp Ref Expression
1 esumiun.0 ( 𝜑𝐴𝑉 )
2 esumiun.1 ( ( 𝜑𝑗𝐴 ) → 𝐵𝑊 )
3 esumiun.2 ( ( ( 𝜑𝑗𝐴 ) ∧ 𝑘𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
4 1 2 aciunf1 ( 𝜑 → ∃ 𝑓 ( 𝑓 : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) )
5 f1f1orn ( 𝑓 : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) → 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 )
6 5 anim1i ( ( 𝑓 : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) → ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) )
7 f1f ( 𝑓 : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) → 𝑓 : 𝑗𝐴 𝐵 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
8 7 frnd ( 𝑓 : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) → ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
9 8 adantr ( ( 𝑓 : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) → ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
10 6 9 jca ( ( 𝑓 : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) → ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) )
11 10 eximi ( ∃ 𝑓 ( 𝑓 : 𝑗𝐴 𝐵1-1 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) → ∃ 𝑓 ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) )
12 4 11 syl ( 𝜑 → ∃ 𝑓 ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) )
13 nfv 𝑧 ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) )
14 nfcv 𝑧 𝐶
15 nfcsb1v 𝑘 ( 2nd𝑧 ) / 𝑘 𝐶
16 nfcv 𝑧 𝑗𝐴 𝐵
17 nfcv 𝑧 ran 𝑓
18 nfcv 𝑧 𝑓
19 csbeq1a ( 𝑘 = ( 2nd𝑧 ) → 𝐶 = ( 2nd𝑧 ) / 𝑘 𝐶 )
20 2 ralrimiva ( 𝜑 → ∀ 𝑗𝐴 𝐵𝑊 )
21 iunexg ( ( 𝐴𝑉 ∧ ∀ 𝑗𝐴 𝐵𝑊 ) → 𝑗𝐴 𝐵 ∈ V )
22 1 20 21 syl2anc ( 𝜑 𝑗𝐴 𝐵 ∈ V )
23 22 adantr ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) → 𝑗𝐴 𝐵 ∈ V )
24 simprl ( ( 𝜑 ∧ ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) → 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 )
25 f1ocnv ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 𝑓 : ran 𝑓1-1-onto 𝑗𝐴 𝐵 )
26 24 25 syl ( ( 𝜑 ∧ ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) → 𝑓 : ran 𝑓1-1-onto 𝑗𝐴 𝐵 )
27 26 adantrlr ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) → 𝑓 : ran 𝑓1-1-onto 𝑗𝐴 𝐵 )
28 nfv 𝑗 𝜑
29 nfcv 𝑗 𝑓
30 nfiu1 𝑗 𝑗𝐴 𝐵
31 29 nfrn 𝑗 ran 𝑓
32 29 30 31 nff1o 𝑗 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓
33 nfv 𝑗 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙
34 30 33 nfralw 𝑗𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙
35 32 34 nfan 𝑗 ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 )
36 nfcv 𝑗 ran 𝑓
37 nfiu1 𝑗 𝑗𝐴 ( { 𝑗 } × 𝐵 )
38 36 37 nfss 𝑗 ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 )
39 35 38 nfan 𝑗 ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
40 28 39 nfan 𝑗 ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) )
41 nfv 𝑗 𝑧 ∈ ran 𝑓
42 40 41 nfan 𝑗 ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 )
43 simpr ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 𝑗𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → ( 𝑓𝑘 ) = 𝑧 )
44 43 fveq2d ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 𝑗𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → ( 2nd ‘ ( 𝑓𝑘 ) ) = ( 2nd𝑧 ) )
45 simplr ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 𝑗𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → 𝑘 𝑗𝐴 𝐵 )
46 simp-4r ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) )
47 46 simpld ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) )
48 47 simprd ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 )
49 48 ad2antrr ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 𝑗𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 )
50 2fveq3 ( 𝑙 = 𝑘 → ( 2nd ‘ ( 𝑓𝑙 ) ) = ( 2nd ‘ ( 𝑓𝑘 ) ) )
51 id ( 𝑙 = 𝑘𝑙 = 𝑘 )
52 50 51 eqeq12d ( 𝑙 = 𝑘 → ( ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ↔ ( 2nd ‘ ( 𝑓𝑘 ) ) = 𝑘 ) )
53 52 rspcva ( ( 𝑘 𝑗𝐴 𝐵 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) → ( 2nd ‘ ( 𝑓𝑘 ) ) = 𝑘 )
54 45 49 53 syl2anc ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 𝑗𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → ( 2nd ‘ ( 𝑓𝑘 ) ) = 𝑘 )
55 44 54 eqtr3d ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 𝑗𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → ( 2nd𝑧 ) = 𝑘 )
56 47 simpld ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 )
57 56 ad2antrr ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 𝑗𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 )
58 f1ocnvfv1 ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓𝑘 𝑗𝐴 𝐵 ) → ( 𝑓 ‘ ( 𝑓𝑘 ) ) = 𝑘 )
59 57 45 58 syl2anc ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 𝑗𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → ( 𝑓 ‘ ( 𝑓𝑘 ) ) = 𝑘 )
60 43 fveq2d ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 𝑗𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → ( 𝑓 ‘ ( 𝑓𝑘 ) ) = ( 𝑓𝑧 ) )
61 55 59 60 3eqtr2rd ( ( ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) ∧ 𝑘 𝑗𝐴 𝐵 ) ∧ ( 𝑓𝑘 ) = 𝑧 ) → ( 𝑓𝑧 ) = ( 2nd𝑧 ) )
62 f1ofn ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓𝑓 Fn 𝑗𝐴 𝐵 )
63 56 62 syl ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑓 Fn 𝑗𝐴 𝐵 )
64 simpllr ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → 𝑧 ∈ ran 𝑓 )
65 fvelrnb ( 𝑓 Fn 𝑗𝐴 𝐵 → ( 𝑧 ∈ ran 𝑓 ↔ ∃ 𝑘 𝑗𝐴 𝐵 ( 𝑓𝑘 ) = 𝑧 ) )
66 65 biimpa ( ( 𝑓 Fn 𝑗𝐴 𝐵𝑧 ∈ ran 𝑓 ) → ∃ 𝑘 𝑗𝐴 𝐵 ( 𝑓𝑘 ) = 𝑧 )
67 63 64 66 syl2anc ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ∃ 𝑘 𝑗𝐴 𝐵 ( 𝑓𝑘 ) = 𝑧 )
68 61 67 r19.29a ( ( ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) ∧ 𝑗𝐴 ) ∧ 𝑧 ∈ ( { 𝑗 } × 𝐵 ) ) → ( 𝑓𝑧 ) = ( 2nd𝑧 ) )
69 simprr ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) → ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
70 69 sselda ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) → 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
71 eliun ( 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ↔ ∃ 𝑗𝐴 𝑧 ∈ ( { 𝑗 } × 𝐵 ) )
72 70 71 sylib ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) → ∃ 𝑗𝐴 𝑧 ∈ ( { 𝑗 } × 𝐵 ) )
73 42 68 72 r19.29af ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 ∈ ran 𝑓 ) → ( 𝑓𝑧 ) = ( 2nd𝑧 ) )
74 nfcv 𝑗 𝑘
75 74 30 nfel 𝑗 𝑘 𝑗𝐴 𝐵
76 28 75 nfan 𝑗 ( 𝜑𝑘 𝑗𝐴 𝐵 )
77 3 adantllr ( ( ( ( 𝜑𝑘 𝑗𝐴 𝐵 ) ∧ 𝑗𝐴 ) ∧ 𝑘𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
78 eliun ( 𝑘 𝑗𝐴 𝐵 ↔ ∃ 𝑗𝐴 𝑘𝐵 )
79 78 biimpi ( 𝑘 𝑗𝐴 𝐵 → ∃ 𝑗𝐴 𝑘𝐵 )
80 79 adantl ( ( 𝜑𝑘 𝑗𝐴 𝐵 ) → ∃ 𝑗𝐴 𝑘𝐵 )
81 76 77 80 r19.29af ( ( 𝜑𝑘 𝑗𝐴 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
82 81 adantlr ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑘 𝑗𝐴 𝐵 ) → 𝐶 ∈ ( 0 [,] +∞ ) )
83 13 14 15 16 17 18 19 23 27 73 82 esumf1o ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) → Σ* 𝑘 𝑗𝐴 𝐵 𝐶 = Σ* 𝑧 ∈ ran 𝑓 ( 2nd𝑧 ) / 𝑘 𝐶 )
84 83 eqcomd ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 2nd𝑧 ) / 𝑘 𝐶 = Σ* 𝑘 𝑗𝐴 𝐵 𝐶 )
85 snex { 𝑗 } ∈ V
86 85 a1i ( ( 𝜑𝑗𝐴 ) → { 𝑗 } ∈ V )
87 86 2 xpexd ( ( 𝜑𝑗𝐴 ) → ( { 𝑗 } × 𝐵 ) ∈ V )
88 87 ralrimiva ( 𝜑 → ∀ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∈ V )
89 iunexg ( ( 𝐴𝑉 ∧ ∀ 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∈ V ) → 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∈ V )
90 1 88 89 syl2anc ( 𝜑 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∈ V )
91 90 adantr ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) → 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ∈ V )
92 nfcv 𝑗 𝑧
93 92 37 nfel 𝑗 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 )
94 28 93 nfan 𝑗 ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
95 nfcv 𝑗 ( 2nd𝑧 )
96 nfcv 𝑗 𝐶
97 95 96 nfcsbw 𝑗 ( 2nd𝑧 ) / 𝑘 𝐶
98 nfcv 𝑗 ( 0 [,] +∞ )
99 97 98 nfel 𝑗 ( 2nd𝑧 ) / 𝑘 𝐶 ∈ ( 0 [,] +∞ )
100 simprr ( ( ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗𝐴 ) ∧ ( ( 1st𝑧 ) = 𝑗 ∧ ( 2nd𝑧 ) ∈ 𝐵 ) ) → ( 2nd𝑧 ) ∈ 𝐵 )
101 simplll ( ( ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗𝐴 ) ∧ ( ( 1st𝑧 ) = 𝑗 ∧ ( 2nd𝑧 ) ∈ 𝐵 ) ) → 𝜑 )
102 simplr ( ( ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗𝐴 ) ∧ ( ( 1st𝑧 ) = 𝑗 ∧ ( 2nd𝑧 ) ∈ 𝐵 ) ) → 𝑗𝐴 )
103 3 ralrimiva ( ( 𝜑𝑗𝐴 ) → ∀ 𝑘𝐵 𝐶 ∈ ( 0 [,] +∞ ) )
104 101 102 103 syl2anc ( ( ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗𝐴 ) ∧ ( ( 1st𝑧 ) = 𝑗 ∧ ( 2nd𝑧 ) ∈ 𝐵 ) ) → ∀ 𝑘𝐵 𝐶 ∈ ( 0 [,] +∞ ) )
105 rspcsbela ( ( ( 2nd𝑧 ) ∈ 𝐵 ∧ ∀ 𝑘𝐵 𝐶 ∈ ( 0 [,] +∞ ) ) → ( 2nd𝑧 ) / 𝑘 𝐶 ∈ ( 0 [,] +∞ ) )
106 100 104 105 syl2anc ( ( ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ∧ 𝑗𝐴 ) ∧ ( ( 1st𝑧 ) = 𝑗 ∧ ( 2nd𝑧 ) ∈ 𝐵 ) ) → ( 2nd𝑧 ) / 𝑘 𝐶 ∈ ( 0 [,] +∞ ) )
107 xp1st ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st𝑧 ) ∈ { 𝑗 } )
108 elsni ( ( 1st𝑧 ) ∈ { 𝑗 } → ( 1st𝑧 ) = 𝑗 )
109 107 108 syl ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 1st𝑧 ) = 𝑗 )
110 xp2nd ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( 2nd𝑧 ) ∈ 𝐵 )
111 109 110 jca ( 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ( ( 1st𝑧 ) = 𝑗 ∧ ( 2nd𝑧 ) ∈ 𝐵 ) )
112 111 reximi ( ∃ 𝑗𝐴 𝑧 ∈ ( { 𝑗 } × 𝐵 ) → ∃ 𝑗𝐴 ( ( 1st𝑧 ) = 𝑗 ∧ ( 2nd𝑧 ) ∈ 𝐵 ) )
113 71 112 sylbi ( 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) → ∃ 𝑗𝐴 ( ( 1st𝑧 ) = 𝑗 ∧ ( 2nd𝑧 ) ∈ 𝐵 ) )
114 113 adantl ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) → ∃ 𝑗𝐴 ( ( 1st𝑧 ) = 𝑗 ∧ ( 2nd𝑧 ) ∈ 𝐵 ) )
115 94 99 106 114 r19.29af2 ( ( 𝜑𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) → ( 2nd𝑧 ) / 𝑘 𝐶 ∈ ( 0 [,] +∞ ) )
116 115 adantlr ( ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) ∧ 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) → ( 2nd𝑧 ) / 𝑘 𝐶 ∈ ( 0 [,] +∞ ) )
117 simprr ( ( 𝜑 ∧ ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) → ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
118 117 adantrlr ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) → ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) )
119 13 91 116 118 esummono ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) → Σ* 𝑧 ∈ ran 𝑓 ( 2nd𝑧 ) / 𝑘 𝐶 ≤ Σ* 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ( 2nd𝑧 ) / 𝑘 𝐶 )
120 84 119 eqbrtrrd ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) → Σ* 𝑘 𝑗𝐴 𝐵 𝐶 ≤ Σ* 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ( 2nd𝑧 ) / 𝑘 𝐶 )
121 vex 𝑗 ∈ V
122 vex 𝑘 ∈ V
123 121 122 op2ndd ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ → ( 2nd𝑧 ) = 𝑘 )
124 123 eqcomd ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ → 𝑘 = ( 2nd𝑧 ) )
125 124 19 syl ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ → 𝐶 = ( 2nd𝑧 ) / 𝑘 𝐶 )
126 125 eqcomd ( 𝑧 = ⟨ 𝑗 , 𝑘 ⟩ → ( 2nd𝑧 ) / 𝑘 𝐶 = 𝐶 )
127 3 anasss ( ( 𝜑 ∧ ( 𝑗𝐴𝑘𝐵 ) ) → 𝐶 ∈ ( 0 [,] +∞ ) )
128 15 126 1 2 127 esum2d ( 𝜑 → Σ* 𝑗𝐴 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ( 2nd𝑧 ) / 𝑘 𝐶 )
129 128 adantr ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) → Σ* 𝑗𝐴 Σ* 𝑘𝐵 𝐶 = Σ* 𝑧 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ( 2nd𝑧 ) / 𝑘 𝐶 )
130 120 129 breqtrrd ( ( 𝜑 ∧ ( ( 𝑓 : 𝑗𝐴 𝐵1-1-onto→ ran 𝑓 ∧ ∀ 𝑙 𝑗𝐴 𝐵 ( 2nd ‘ ( 𝑓𝑙 ) ) = 𝑙 ) ∧ ran 𝑓 𝑗𝐴 ( { 𝑗 } × 𝐵 ) ) ) → Σ* 𝑘 𝑗𝐴 𝐵 𝐶 ≤ Σ* 𝑗𝐴 Σ* 𝑘𝐵 𝐶 )
131 12 130 exlimddv ( 𝜑 → Σ* 𝑘 𝑗𝐴 𝐵 𝐶 ≤ Σ* 𝑗𝐴 Σ* 𝑘𝐵 𝐶 )