Step |
Hyp |
Ref |
Expression |
1 |
|
esumsup.1 |
|- ( ph -> B e. ( 0 [,] +oo ) ) |
2 |
|
esumsup.2 |
|- ( ( ph /\ k e. NN ) -> A e. ( 0 [,] +oo ) ) |
3 |
2
|
fmpttd |
|- ( ph -> ( k e. NN |-> A ) : NN --> ( 0 [,] +oo ) ) |
4 |
|
nfmpt1 |
|- F/_ k ( k e. NN |-> A ) |
5 |
4
|
esumfsup |
|- ( ( k e. NN |-> A ) : NN --> ( 0 [,] +oo ) -> sum* k e. NN ( ( k e. NN |-> A ) ` k ) = sup ( ran seq 1 ( +e , ( k e. NN |-> A ) ) , RR* , < ) ) |
6 |
3 5
|
syl |
|- ( ph -> sum* k e. NN ( ( k e. NN |-> A ) ` k ) = sup ( ran seq 1 ( +e , ( k e. NN |-> A ) ) , RR* , < ) ) |
7 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
8 |
|
eqid |
|- ( k e. NN |-> A ) = ( k e. NN |-> A ) |
9 |
8
|
fvmpt2 |
|- ( ( k e. NN /\ A e. ( 0 [,] +oo ) ) -> ( ( k e. NN |-> A ) ` k ) = A ) |
10 |
7 2 9
|
syl2anc |
|- ( ( ph /\ k e. NN ) -> ( ( k e. NN |-> A ) ` k ) = A ) |
11 |
10
|
esumeq2dv |
|- ( ph -> sum* k e. NN ( ( k e. NN |-> A ) ` k ) = sum* k e. NN A ) |
12 |
|
1z |
|- 1 e. ZZ |
13 |
|
seqfn |
|- ( 1 e. ZZ -> seq 1 ( +e , ( k e. NN |-> A ) ) Fn ( ZZ>= ` 1 ) ) |
14 |
12 13
|
ax-mp |
|- seq 1 ( +e , ( k e. NN |-> A ) ) Fn ( ZZ>= ` 1 ) |
15 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
16 |
15
|
fneq2i |
|- ( seq 1 ( +e , ( k e. NN |-> A ) ) Fn NN <-> seq 1 ( +e , ( k e. NN |-> A ) ) Fn ( ZZ>= ` 1 ) ) |
17 |
14 16
|
mpbir |
|- seq 1 ( +e , ( k e. NN |-> A ) ) Fn NN |
18 |
|
nfcv |
|- F/_ n seq 1 ( +e , ( k e. NN |-> A ) ) |
19 |
18
|
dffn5f |
|- ( seq 1 ( +e , ( k e. NN |-> A ) ) Fn NN <-> seq 1 ( +e , ( k e. NN |-> A ) ) = ( n e. NN |-> ( seq 1 ( +e , ( k e. NN |-> A ) ) ` n ) ) ) |
20 |
17 19
|
mpbi |
|- seq 1 ( +e , ( k e. NN |-> A ) ) = ( n e. NN |-> ( seq 1 ( +e , ( k e. NN |-> A ) ) ` n ) ) |
21 |
20
|
a1i |
|- ( ph -> seq 1 ( +e , ( k e. NN |-> A ) ) = ( n e. NN |-> ( seq 1 ( +e , ( k e. NN |-> A ) ) ` n ) ) ) |
22 |
|
fz1ssnn |
|- ( 1 ... n ) C_ NN |
23 |
22
|
a1i |
|- ( ( ph /\ n e. NN ) -> ( 1 ... n ) C_ NN ) |
24 |
23
|
sselda |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> k e. NN ) |
25 |
|
simpll |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ph ) |
26 |
25 24 2
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> A e. ( 0 [,] +oo ) ) |
27 |
24 26 9
|
syl2anc |
|- ( ( ( ph /\ n e. NN ) /\ k e. ( 1 ... n ) ) -> ( ( k e. NN |-> A ) ` k ) = A ) |
28 |
27
|
esumeq2dv |
|- ( ( ph /\ n e. NN ) -> sum* k e. ( 1 ... n ) ( ( k e. NN |-> A ) ` k ) = sum* k e. ( 1 ... n ) A ) |
29 |
4
|
esumfzf |
|- ( ( ( k e. NN |-> A ) : NN --> ( 0 [,] +oo ) /\ n e. NN ) -> sum* k e. ( 1 ... n ) ( ( k e. NN |-> A ) ` k ) = ( seq 1 ( +e , ( k e. NN |-> A ) ) ` n ) ) |
30 |
3 29
|
sylan |
|- ( ( ph /\ n e. NN ) -> sum* k e. ( 1 ... n ) ( ( k e. NN |-> A ) ` k ) = ( seq 1 ( +e , ( k e. NN |-> A ) ) ` n ) ) |
31 |
28 30
|
eqtr3d |
|- ( ( ph /\ n e. NN ) -> sum* k e. ( 1 ... n ) A = ( seq 1 ( +e , ( k e. NN |-> A ) ) ` n ) ) |
32 |
31
|
mpteq2dva |
|- ( ph -> ( n e. NN |-> sum* k e. ( 1 ... n ) A ) = ( n e. NN |-> ( seq 1 ( +e , ( k e. NN |-> A ) ) ` n ) ) ) |
33 |
21 32
|
eqtr4d |
|- ( ph -> seq 1 ( +e , ( k e. NN |-> A ) ) = ( n e. NN |-> sum* k e. ( 1 ... n ) A ) ) |
34 |
33
|
rneqd |
|- ( ph -> ran seq 1 ( +e , ( k e. NN |-> A ) ) = ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) ) |
35 |
34
|
supeq1d |
|- ( ph -> sup ( ran seq 1 ( +e , ( k e. NN |-> A ) ) , RR* , < ) = sup ( ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) , RR* , < ) ) |
36 |
6 11 35
|
3eqtr3d |
|- ( ph -> sum* k e. NN A = sup ( ran ( n e. NN |-> sum* k e. ( 1 ... n ) A ) , RR* , < ) ) |