| Step |
Hyp |
Ref |
Expression |
| 1 |
|
meascnbl.0 |
|
| 2 |
|
meascnbl.1 |
|
| 3 |
|
meascnbl.2 |
|
| 4 |
|
meascnbl.3 |
|
| 5 |
2
|
adantr |
|
| 6 |
|
measbase |
|
| 7 |
2 6
|
syl |
|
| 8 |
7
|
adantr |
|
| 9 |
3
|
ffvelcdmda |
|
| 10 |
|
simpll |
|
| 11 |
|
fzossnn |
|
| 12 |
|
simpr |
|
| 13 |
11 12
|
sselid |
|
| 14 |
3
|
ffvelcdmda |
|
| 15 |
10 13 14
|
syl2anc |
|
| 16 |
15
|
ralrimiva |
|
| 17 |
|
sigaclfu2 |
|
| 18 |
8 16 17
|
syl2anc |
|
| 19 |
|
difelsiga |
|
| 20 |
8 9 18 19
|
syl3anc |
|
| 21 |
|
measvxrge0 |
|
| 22 |
5 20 21
|
syl2anc |
|
| 23 |
|
fveq2 |
|
| 24 |
|
oveq2 |
|
| 25 |
24
|
iuneq1d |
|
| 26 |
23 25
|
difeq12d |
|
| 27 |
26
|
fveq2d |
|
| 28 |
|
fveq2 |
|
| 29 |
|
oveq2 |
|
| 30 |
29
|
iuneq1d |
|
| 31 |
28 30
|
difeq12d |
|
| 32 |
31
|
fveq2d |
|
| 33 |
1 22 27 32
|
esumcvg2 |
|
| 34 |
|
measfrge0 |
|
| 35 |
2 34
|
syl |
|
| 36 |
|
fcompt |
|
| 37 |
35 3 36
|
syl2anc |
|
| 38 |
|
nfcv |
|
| 39 |
|
fveq2 |
|
| 40 |
|
simpr |
|
| 41 |
40
|
nnzd |
|
| 42 |
|
fzval3 |
|
| 43 |
41 42
|
syl |
|
| 44 |
43
|
olcd |
|
| 45 |
2
|
adantr |
|
| 46 |
|
simpll |
|
| 47 |
|
fzossnn |
|
| 48 |
43
|
eleq2d |
|
| 49 |
48
|
biimpa |
|
| 50 |
47 49
|
sselid |
|
| 51 |
46 50 9
|
syl2anc |
|
| 52 |
38 39 44 45 51
|
measiuns |
|
| 53 |
3
|
ffnd |
|
| 54 |
53 4
|
iuninc |
|
| 55 |
54
|
fveq2d |
|
| 56 |
52 55
|
eqtr3d |
|
| 57 |
56
|
mpteq2dva |
|
| 58 |
37 57
|
eqtr4d |
|
| 59 |
9
|
ralrimiva |
|
| 60 |
|
dfiun2g |
|
| 61 |
59 60
|
syl |
|
| 62 |
|
fnrnfv |
|
| 63 |
53 62
|
syl |
|
| 64 |
63
|
unieqd |
|
| 65 |
61 64
|
eqtr4d |
|
| 66 |
65
|
fveq2d |
|
| 67 |
|
eqidd |
|
| 68 |
67
|
orcd |
|
| 69 |
38 39 68 2 9
|
measiuns |
|
| 70 |
66 69
|
eqtr3d |
|
| 71 |
33 58 70
|
3brtr4d |
|