Metamath Proof Explorer


Theorem measinblem

Description: Lemma for measinb . (Contributed by Thierry Arnoux, 2-Jun-2017)

Ref Expression
Assertion measinblem MmeasuresSASB𝒫SBωDisjxBxMBA=*xBMxA

Proof

Step Hyp Ref Expression
1 iunin1 xBxA=xBxA
2 uniiun B=xBx
3 2 ineq1i BA=xBxA
4 1 3 eqtr4i xBxA=BA
5 4 fveq2i MxBxA=MBA
6 simplll MmeasuresSASB𝒫SBωDisjxBxMmeasuresS
7 nfv xMmeasuresSASB𝒫S
8 nfv xBω
9 nfdisj1 xDisjxBx
10 8 9 nfan xBωDisjxBx
11 7 10 nfan xMmeasuresSASB𝒫SBωDisjxBx
12 simp1ll MmeasuresSASB𝒫SBωDisjxBxxBMmeasuresS
13 measbase MmeasuresSSransigAlgebra
14 12 13 syl MmeasuresSASB𝒫SBωDisjxBxxBSransigAlgebra
15 simp3 MmeasuresSASB𝒫SBωDisjxBxxBxB
16 simp1r MmeasuresSASB𝒫SBωDisjxBxxBB𝒫S
17 elelpwi xBB𝒫SxS
18 15 16 17 syl2anc MmeasuresSASB𝒫SBωDisjxBxxBxS
19 simp1lr MmeasuresSASB𝒫SBωDisjxBxxBAS
20 inelsiga SransigAlgebraxSASxAS
21 14 18 19 20 syl3anc MmeasuresSASB𝒫SBωDisjxBxxBxAS
22 21 3expia MmeasuresSASB𝒫SBωDisjxBxxBxAS
23 11 22 ralrimi MmeasuresSASB𝒫SBωDisjxBxxBxAS
24 simprl MmeasuresSASB𝒫SBωDisjxBxBω
25 disjin DisjxBxDisjxBxA
26 25 ad2antll MmeasuresSASB𝒫SBωDisjxBxDisjxBxA
27 measvuni MmeasuresSxBxASBωDisjxBxAMxBxA=*xBMxA
28 6 23 24 26 27 syl112anc MmeasuresSASB𝒫SBωDisjxBxMxBxA=*xBMxA
29 5 28 eqtr3id MmeasuresSASB𝒫SBωDisjxBxMBA=*xBMxA