Step |
Hyp |
Ref |
Expression |
1 |
|
iunin1 |
|- U_ x e. B ( x i^i A ) = ( U_ x e. B x i^i A ) |
2 |
|
uniiun |
|- U. B = U_ x e. B x |
3 |
2
|
ineq1i |
|- ( U. B i^i A ) = ( U_ x e. B x i^i A ) |
4 |
1 3
|
eqtr4i |
|- U_ x e. B ( x i^i A ) = ( U. B i^i A ) |
5 |
4
|
fveq2i |
|- ( M ` U_ x e. B ( x i^i A ) ) = ( M ` ( U. B i^i A ) ) |
6 |
|
simplll |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ B e. ~P S ) /\ ( B ~<_ _om /\ Disj_ x e. B x ) ) -> M e. ( measures ` S ) ) |
7 |
|
nfv |
|- F/ x ( ( M e. ( measures ` S ) /\ A e. S ) /\ B e. ~P S ) |
8 |
|
nfv |
|- F/ x B ~<_ _om |
9 |
|
nfdisj1 |
|- F/ x Disj_ x e. B x |
10 |
8 9
|
nfan |
|- F/ x ( B ~<_ _om /\ Disj_ x e. B x ) |
11 |
7 10
|
nfan |
|- F/ x ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ B e. ~P S ) /\ ( B ~<_ _om /\ Disj_ x e. B x ) ) |
12 |
|
simp1ll |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ B e. ~P S ) /\ ( B ~<_ _om /\ Disj_ x e. B x ) /\ x e. B ) -> M e. ( measures ` S ) ) |
13 |
|
measbase |
|- ( M e. ( measures ` S ) -> S e. U. ran sigAlgebra ) |
14 |
12 13
|
syl |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ B e. ~P S ) /\ ( B ~<_ _om /\ Disj_ x e. B x ) /\ x e. B ) -> S e. U. ran sigAlgebra ) |
15 |
|
simp3 |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ B e. ~P S ) /\ ( B ~<_ _om /\ Disj_ x e. B x ) /\ x e. B ) -> x e. B ) |
16 |
|
simp1r |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ B e. ~P S ) /\ ( B ~<_ _om /\ Disj_ x e. B x ) /\ x e. B ) -> B e. ~P S ) |
17 |
|
elelpwi |
|- ( ( x e. B /\ B e. ~P S ) -> x e. S ) |
18 |
15 16 17
|
syl2anc |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ B e. ~P S ) /\ ( B ~<_ _om /\ Disj_ x e. B x ) /\ x e. B ) -> x e. S ) |
19 |
|
simp1lr |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ B e. ~P S ) /\ ( B ~<_ _om /\ Disj_ x e. B x ) /\ x e. B ) -> A e. S ) |
20 |
|
inelsiga |
|- ( ( S e. U. ran sigAlgebra /\ x e. S /\ A e. S ) -> ( x i^i A ) e. S ) |
21 |
14 18 19 20
|
syl3anc |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ B e. ~P S ) /\ ( B ~<_ _om /\ Disj_ x e. B x ) /\ x e. B ) -> ( x i^i A ) e. S ) |
22 |
21
|
3expia |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ B e. ~P S ) /\ ( B ~<_ _om /\ Disj_ x e. B x ) ) -> ( x e. B -> ( x i^i A ) e. S ) ) |
23 |
11 22
|
ralrimi |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ B e. ~P S ) /\ ( B ~<_ _om /\ Disj_ x e. B x ) ) -> A. x e. B ( x i^i A ) e. S ) |
24 |
|
simprl |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ B e. ~P S ) /\ ( B ~<_ _om /\ Disj_ x e. B x ) ) -> B ~<_ _om ) |
25 |
|
disjin |
|- ( Disj_ x e. B x -> Disj_ x e. B ( x i^i A ) ) |
26 |
25
|
ad2antll |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ B e. ~P S ) /\ ( B ~<_ _om /\ Disj_ x e. B x ) ) -> Disj_ x e. B ( x i^i A ) ) |
27 |
|
measvuni |
|- ( ( M e. ( measures ` S ) /\ A. x e. B ( x i^i A ) e. S /\ ( B ~<_ _om /\ Disj_ x e. B ( x i^i A ) ) ) -> ( M ` U_ x e. B ( x i^i A ) ) = sum* x e. B ( M ` ( x i^i A ) ) ) |
28 |
6 23 24 26 27
|
syl112anc |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ B e. ~P S ) /\ ( B ~<_ _om /\ Disj_ x e. B x ) ) -> ( M ` U_ x e. B ( x i^i A ) ) = sum* x e. B ( M ` ( x i^i A ) ) ) |
29 |
5 28
|
eqtr3id |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ B e. ~P S ) /\ ( B ~<_ _om /\ Disj_ x e. B x ) ) -> ( M ` ( U. B i^i A ) ) = sum* x e. B ( M ` ( x i^i A ) ) ) |