Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
|- ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ x e. S ) -> M e. ( measures ` S ) ) |
2 |
|
measbase |
|- ( M e. ( measures ` S ) -> S e. U. ran sigAlgebra ) |
3 |
2
|
ad2antrr |
|- ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ x e. S ) -> S e. U. ran sigAlgebra ) |
4 |
|
simpr |
|- ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ x e. S ) -> x e. S ) |
5 |
|
simplr |
|- ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ x e. S ) -> A e. S ) |
6 |
|
inelsiga |
|- ( ( S e. U. ran sigAlgebra /\ x e. S /\ A e. S ) -> ( x i^i A ) e. S ) |
7 |
3 4 5 6
|
syl3anc |
|- ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ x e. S ) -> ( x i^i A ) e. S ) |
8 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ ( x i^i A ) e. S ) -> ( M ` ( x i^i A ) ) e. ( 0 [,] +oo ) ) |
9 |
1 7 8
|
syl2anc |
|- ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ x e. S ) -> ( M ` ( x i^i A ) ) e. ( 0 [,] +oo ) ) |
10 |
9
|
fmpttd |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( x e. S |-> ( M ` ( x i^i A ) ) ) : S --> ( 0 [,] +oo ) ) |
11 |
|
eqidd |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( x e. S |-> ( M ` ( x i^i A ) ) ) = ( x e. S |-> ( M ` ( x i^i A ) ) ) ) |
12 |
|
ineq1 |
|- ( x = (/) -> ( x i^i A ) = ( (/) i^i A ) ) |
13 |
|
0in |
|- ( (/) i^i A ) = (/) |
14 |
12 13
|
eqtrdi |
|- ( x = (/) -> ( x i^i A ) = (/) ) |
15 |
14
|
fveq2d |
|- ( x = (/) -> ( M ` ( x i^i A ) ) = ( M ` (/) ) ) |
16 |
15
|
adantl |
|- ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ x = (/) ) -> ( M ` ( x i^i A ) ) = ( M ` (/) ) ) |
17 |
|
measvnul |
|- ( M e. ( measures ` S ) -> ( M ` (/) ) = 0 ) |
18 |
17
|
ad2antrr |
|- ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ x = (/) ) -> ( M ` (/) ) = 0 ) |
19 |
16 18
|
eqtrd |
|- ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ x = (/) ) -> ( M ` ( x i^i A ) ) = 0 ) |
20 |
2
|
adantr |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> S e. U. ran sigAlgebra ) |
21 |
|
0elsiga |
|- ( S e. U. ran sigAlgebra -> (/) e. S ) |
22 |
20 21
|
syl |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> (/) e. S ) |
23 |
|
0red |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> 0 e. RR ) |
24 |
11 19 22 23
|
fvmptd |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` (/) ) = 0 ) |
25 |
|
measinblem |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ ( z ~<_ _om /\ Disj_ y e. z y ) ) -> ( M ` ( U. z i^i A ) ) = sum* y e. z ( M ` ( y i^i A ) ) ) |
26 |
|
eqidd |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ ( z ~<_ _om /\ Disj_ y e. z y ) ) -> ( x e. S |-> ( M ` ( x i^i A ) ) ) = ( x e. S |-> ( M ` ( x i^i A ) ) ) ) |
27 |
|
ineq1 |
|- ( x = U. z -> ( x i^i A ) = ( U. z i^i A ) ) |
28 |
27
|
adantl |
|- ( ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ ( z ~<_ _om /\ Disj_ y e. z y ) ) /\ x = U. z ) -> ( x i^i A ) = ( U. z i^i A ) ) |
29 |
28
|
fveq2d |
|- ( ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ ( z ~<_ _om /\ Disj_ y e. z y ) ) /\ x = U. z ) -> ( M ` ( x i^i A ) ) = ( M ` ( U. z i^i A ) ) ) |
30 |
|
simplll |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ ( z ~<_ _om /\ Disj_ y e. z y ) ) -> M e. ( measures ` S ) ) |
31 |
30 2
|
syl |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ ( z ~<_ _om /\ Disj_ y e. z y ) ) -> S e. U. ran sigAlgebra ) |
32 |
|
simplr |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ ( z ~<_ _om /\ Disj_ y e. z y ) ) -> z e. ~P S ) |
33 |
|
simprl |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ ( z ~<_ _om /\ Disj_ y e. z y ) ) -> z ~<_ _om ) |
34 |
|
sigaclcu |
|- ( ( S e. U. ran sigAlgebra /\ z e. ~P S /\ z ~<_ _om ) -> U. z e. S ) |
35 |
31 32 33 34
|
syl3anc |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ ( z ~<_ _om /\ Disj_ y e. z y ) ) -> U. z e. S ) |
36 |
|
simpllr |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ ( z ~<_ _om /\ Disj_ y e. z y ) ) -> A e. S ) |
37 |
|
inelsiga |
|- ( ( S e. U. ran sigAlgebra /\ U. z e. S /\ A e. S ) -> ( U. z i^i A ) e. S ) |
38 |
31 35 36 37
|
syl3anc |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ ( z ~<_ _om /\ Disj_ y e. z y ) ) -> ( U. z i^i A ) e. S ) |
39 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ ( U. z i^i A ) e. S ) -> ( M ` ( U. z i^i A ) ) e. ( 0 [,] +oo ) ) |
40 |
30 38 39
|
syl2anc |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ ( z ~<_ _om /\ Disj_ y e. z y ) ) -> ( M ` ( U. z i^i A ) ) e. ( 0 [,] +oo ) ) |
41 |
26 29 35 40
|
fvmptd |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ ( z ~<_ _om /\ Disj_ y e. z y ) ) -> ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` U. z ) = ( M ` ( U. z i^i A ) ) ) |
42 |
|
eqidd |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ y e. z ) -> ( x e. S |-> ( M ` ( x i^i A ) ) ) = ( x e. S |-> ( M ` ( x i^i A ) ) ) ) |
43 |
|
ineq1 |
|- ( x = y -> ( x i^i A ) = ( y i^i A ) ) |
44 |
43
|
adantl |
|- ( ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ y e. z ) /\ x = y ) -> ( x i^i A ) = ( y i^i A ) ) |
45 |
44
|
fveq2d |
|- ( ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ y e. z ) /\ x = y ) -> ( M ` ( x i^i A ) ) = ( M ` ( y i^i A ) ) ) |
46 |
|
elpwi |
|- ( z e. ~P S -> z C_ S ) |
47 |
46
|
ad2antlr |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ y e. z ) -> z C_ S ) |
48 |
|
simpr |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ y e. z ) -> y e. z ) |
49 |
47 48
|
sseldd |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ y e. z ) -> y e. S ) |
50 |
|
simplll |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ y e. z ) -> M e. ( measures ` S ) ) |
51 |
50 2
|
syl |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ y e. z ) -> S e. U. ran sigAlgebra ) |
52 |
|
simpllr |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ y e. z ) -> A e. S ) |
53 |
|
inelsiga |
|- ( ( S e. U. ran sigAlgebra /\ y e. S /\ A e. S ) -> ( y i^i A ) e. S ) |
54 |
51 49 52 53
|
syl3anc |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ y e. z ) -> ( y i^i A ) e. S ) |
55 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ ( y i^i A ) e. S ) -> ( M ` ( y i^i A ) ) e. ( 0 [,] +oo ) ) |
56 |
50 54 55
|
syl2anc |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ y e. z ) -> ( M ` ( y i^i A ) ) e. ( 0 [,] +oo ) ) |
57 |
42 45 49 56
|
fvmptd |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ y e. z ) -> ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` y ) = ( M ` ( y i^i A ) ) ) |
58 |
57
|
esumeq2dv |
|- ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) -> sum* y e. z ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` y ) = sum* y e. z ( M ` ( y i^i A ) ) ) |
59 |
58
|
adantr |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ ( z ~<_ _om /\ Disj_ y e. z y ) ) -> sum* y e. z ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` y ) = sum* y e. z ( M ` ( y i^i A ) ) ) |
60 |
25 41 59
|
3eqtr4d |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) /\ ( z ~<_ _om /\ Disj_ y e. z y ) ) -> ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` U. z ) = sum* y e. z ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` y ) ) |
61 |
60
|
ex |
|- ( ( ( M e. ( measures ` S ) /\ A e. S ) /\ z e. ~P S ) -> ( ( z ~<_ _om /\ Disj_ y e. z y ) -> ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` U. z ) = sum* y e. z ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` y ) ) ) |
62 |
61
|
ralrimiva |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> A. z e. ~P S ( ( z ~<_ _om /\ Disj_ y e. z y ) -> ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` U. z ) = sum* y e. z ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` y ) ) ) |
63 |
|
ismeas |
|- ( S e. U. ran sigAlgebra -> ( ( x e. S |-> ( M ` ( x i^i A ) ) ) e. ( measures ` S ) <-> ( ( x e. S |-> ( M ` ( x i^i A ) ) ) : S --> ( 0 [,] +oo ) /\ ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` (/) ) = 0 /\ A. z e. ~P S ( ( z ~<_ _om /\ Disj_ y e. z y ) -> ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` U. z ) = sum* y e. z ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` y ) ) ) ) ) |
64 |
20 63
|
syl |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( ( x e. S |-> ( M ` ( x i^i A ) ) ) e. ( measures ` S ) <-> ( ( x e. S |-> ( M ` ( x i^i A ) ) ) : S --> ( 0 [,] +oo ) /\ ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` (/) ) = 0 /\ A. z e. ~P S ( ( z ~<_ _om /\ Disj_ y e. z y ) -> ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` U. z ) = sum* y e. z ( ( x e. S |-> ( M ` ( x i^i A ) ) ) ` y ) ) ) ) ) |
65 |
10 24 62 64
|
mpbir3and |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( x e. S |-> ( M ` ( x i^i A ) ) ) e. ( measures ` S ) ) |