Step |
Hyp |
Ref |
Expression |
1 |
|
simpll |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
2 |
|
measbase |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
3 |
2
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
4 |
|
simpr |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
5 |
|
simplr |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → 𝐴 ∈ 𝑆 ) |
6 |
|
inelsiga |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝑆 ) |
7 |
3 4 5 6
|
syl3anc |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝑆 ) |
8 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑥 ∩ 𝐴 ) ∈ 𝑆 ) → ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
9 |
1 7 8
|
syl2anc |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 ∈ 𝑆 ) → ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
10 |
9
|
fmpttd |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) : 𝑆 ⟶ ( 0 [,] +∞ ) ) |
11 |
|
eqidd |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ) |
12 |
|
ineq1 |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∩ 𝐴 ) = ( ∅ ∩ 𝐴 ) ) |
13 |
|
0in |
⊢ ( ∅ ∩ 𝐴 ) = ∅ |
14 |
12 13
|
eqtrdi |
⊢ ( 𝑥 = ∅ → ( 𝑥 ∩ 𝐴 ) = ∅ ) |
15 |
14
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) = ( 𝑀 ‘ ∅ ) ) |
16 |
15
|
adantl |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 = ∅ ) → ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) = ( 𝑀 ‘ ∅ ) ) |
17 |
|
measvnul |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( 𝑀 ‘ ∅ ) = 0 ) |
18 |
17
|
ad2antrr |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 = ∅ ) → ( 𝑀 ‘ ∅ ) = 0 ) |
19 |
16 18
|
eqtrd |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑥 = ∅ ) → ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) = 0 ) |
20 |
2
|
adantr |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
21 |
|
0elsiga |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ∅ ∈ 𝑆 ) |
22 |
20 21
|
syl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → ∅ ∈ 𝑆 ) |
23 |
|
0red |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → 0 ∈ ℝ ) |
24 |
11 19 22 23
|
fvmptd |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ ∅ ) = 0 ) |
25 |
|
measinblem |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) → ( 𝑀 ‘ ( ∪ 𝑧 ∩ 𝐴 ) ) = Σ* 𝑦 ∈ 𝑧 ( 𝑀 ‘ ( 𝑦 ∩ 𝐴 ) ) ) |
26 |
|
eqidd |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ) |
27 |
|
ineq1 |
⊢ ( 𝑥 = ∪ 𝑧 → ( 𝑥 ∩ 𝐴 ) = ( ∪ 𝑧 ∩ 𝐴 ) ) |
28 |
27
|
adantl |
⊢ ( ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) ∧ 𝑥 = ∪ 𝑧 ) → ( 𝑥 ∩ 𝐴 ) = ( ∪ 𝑧 ∩ 𝐴 ) ) |
29 |
28
|
fveq2d |
⊢ ( ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) ∧ 𝑥 = ∪ 𝑧 ) → ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) = ( 𝑀 ‘ ( ∪ 𝑧 ∩ 𝐴 ) ) ) |
30 |
|
simplll |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
31 |
30 2
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
32 |
|
simplr |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) → 𝑧 ∈ 𝒫 𝑆 ) |
33 |
|
simprl |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) → 𝑧 ≼ ω ) |
34 |
|
sigaclcu |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑧 ∈ 𝒫 𝑆 ∧ 𝑧 ≼ ω ) → ∪ 𝑧 ∈ 𝑆 ) |
35 |
31 32 33 34
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) → ∪ 𝑧 ∈ 𝑆 ) |
36 |
|
simpllr |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) → 𝐴 ∈ 𝑆 ) |
37 |
|
inelsiga |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∪ 𝑧 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( ∪ 𝑧 ∩ 𝐴 ) ∈ 𝑆 ) |
38 |
31 35 36 37
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) → ( ∪ 𝑧 ∩ 𝐴 ) ∈ 𝑆 ) |
39 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( ∪ 𝑧 ∩ 𝐴 ) ∈ 𝑆 ) → ( 𝑀 ‘ ( ∪ 𝑧 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
40 |
30 38 39
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) → ( 𝑀 ‘ ( ∪ 𝑧 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
41 |
26 29 35 40
|
fvmptd |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ ∪ 𝑧 ) = ( 𝑀 ‘ ( ∪ 𝑧 ∩ 𝐴 ) ) ) |
42 |
|
eqidd |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑧 ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) = ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ) |
43 |
|
ineq1 |
⊢ ( 𝑥 = 𝑦 → ( 𝑥 ∩ 𝐴 ) = ( 𝑦 ∩ 𝐴 ) ) |
44 |
43
|
adantl |
⊢ ( ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑧 ) ∧ 𝑥 = 𝑦 ) → ( 𝑥 ∩ 𝐴 ) = ( 𝑦 ∩ 𝐴 ) ) |
45 |
44
|
fveq2d |
⊢ ( ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑧 ) ∧ 𝑥 = 𝑦 ) → ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑦 ∩ 𝐴 ) ) ) |
46 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 𝑆 → 𝑧 ⊆ 𝑆 ) |
47 |
46
|
ad2antlr |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑧 ) → 𝑧 ⊆ 𝑆 ) |
48 |
|
simpr |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ∈ 𝑧 ) |
49 |
47 48
|
sseldd |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑧 ) → 𝑦 ∈ 𝑆 ) |
50 |
|
simplll |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑧 ) → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
51 |
50 2
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑧 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
52 |
|
simpllr |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑧 ) → 𝐴 ∈ 𝑆 ) |
53 |
|
inelsiga |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑦 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝑦 ∩ 𝐴 ) ∈ 𝑆 ) |
54 |
51 49 52 53
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑧 ) → ( 𝑦 ∩ 𝐴 ) ∈ 𝑆 ) |
55 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑦 ∩ 𝐴 ) ∈ 𝑆 ) → ( 𝑀 ‘ ( 𝑦 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
56 |
50 54 55
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑧 ) → ( 𝑀 ‘ ( 𝑦 ∩ 𝐴 ) ) ∈ ( 0 [,] +∞ ) ) |
57 |
42 45 49 56
|
fvmptd |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ 𝑦 ∈ 𝑧 ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ 𝑦 ) = ( 𝑀 ‘ ( 𝑦 ∩ 𝐴 ) ) ) |
58 |
57
|
esumeq2dv |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) → Σ* 𝑦 ∈ 𝑧 ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ 𝑦 ) = Σ* 𝑦 ∈ 𝑧 ( 𝑀 ‘ ( 𝑦 ∩ 𝐴 ) ) ) |
59 |
58
|
adantr |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) → Σ* 𝑦 ∈ 𝑧 ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ 𝑦 ) = Σ* 𝑦 ∈ 𝑧 ( 𝑀 ‘ ( 𝑦 ∩ 𝐴 ) ) ) |
60 |
25 41 59
|
3eqtr4d |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) ∧ ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ ∪ 𝑧 ) = Σ* 𝑦 ∈ 𝑧 ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ 𝑦 ) ) |
61 |
60
|
ex |
⊢ ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝑧 ∈ 𝒫 𝑆 ) → ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ ∪ 𝑧 ) = Σ* 𝑦 ∈ 𝑧 ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ 𝑦 ) ) ) |
62 |
61
|
ralrimiva |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → ∀ 𝑧 ∈ 𝒫 𝑆 ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ ∪ 𝑧 ) = Σ* 𝑦 ∈ 𝑧 ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ 𝑦 ) ) ) |
63 |
|
ismeas |
⊢ ( 𝑆 ∈ ∪ ran sigAlgebra → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ∈ ( measures ‘ 𝑆 ) ↔ ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ ∅ ) = 0 ∧ ∀ 𝑧 ∈ 𝒫 𝑆 ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ ∪ 𝑧 ) = Σ* 𝑦 ∈ 𝑧 ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ 𝑦 ) ) ) ) ) |
64 |
20 63
|
syl |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ∈ ( measures ‘ 𝑆 ) ↔ ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ ∅ ) = 0 ∧ ∀ 𝑧 ∈ 𝒫 𝑆 ( ( 𝑧 ≼ ω ∧ Disj 𝑦 ∈ 𝑧 𝑦 ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ ∪ 𝑧 ) = Σ* 𝑦 ∈ 𝑧 ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ‘ 𝑦 ) ) ) ) ) |
65 |
10 24 62 64
|
mpbir3and |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ∈ ( measures ‘ 𝑆 ) ) |