| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iunin1 |
⊢ ∪ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) = ( ∪ 𝑥 ∈ 𝐵 𝑥 ∩ 𝐴 ) |
| 2 |
|
uniiun |
⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 |
| 3 |
2
|
ineq1i |
⊢ ( ∪ 𝐵 ∩ 𝐴 ) = ( ∪ 𝑥 ∈ 𝐵 𝑥 ∩ 𝐴 ) |
| 4 |
1 3
|
eqtr4i |
⊢ ∪ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) = ( ∪ 𝐵 ∩ 𝐴 ) |
| 5 |
4
|
fveq2i |
⊢ ( 𝑀 ‘ ∪ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ) = ( 𝑀 ‘ ( ∪ 𝐵 ∩ 𝐴 ) ) |
| 6 |
|
simplll |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ) → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
| 7 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) |
| 8 |
|
nfv |
⊢ Ⅎ 𝑥 𝐵 ≼ ω |
| 9 |
|
nfdisj1 |
⊢ Ⅎ 𝑥 Disj 𝑥 ∈ 𝐵 𝑥 |
| 10 |
8 9
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) |
| 11 |
7 10
|
nfan |
⊢ Ⅎ 𝑥 ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ) |
| 12 |
|
simp1ll |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
| 13 |
|
measbase |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 14 |
12 13
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 15 |
|
simp3 |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
| 16 |
|
simp1r |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐵 ∈ 𝒫 𝑆 ) |
| 17 |
|
elelpwi |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑆 ) → 𝑥 ∈ 𝑆 ) |
| 18 |
15 16 17
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑆 ) |
| 19 |
|
simp1lr |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ 𝑆 ) |
| 20 |
|
inelsiga |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝑆 ) |
| 21 |
14 18 19 20
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝑆 ) |
| 22 |
21
|
3expia |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ) → ( 𝑥 ∈ 𝐵 → ( 𝑥 ∩ 𝐴 ) ∈ 𝑆 ) ) |
| 23 |
11 22
|
ralrimi |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ) → ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ∈ 𝑆 ) |
| 24 |
|
simprl |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ) → 𝐵 ≼ ω ) |
| 25 |
|
disjin |
⊢ ( Disj 𝑥 ∈ 𝐵 𝑥 → Disj 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ) |
| 26 |
25
|
ad2antll |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ) → Disj 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ) |
| 27 |
|
measvuni |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ∈ 𝑆 ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ) ) → ( 𝑀 ‘ ∪ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ) = Σ* 𝑥 ∈ 𝐵 ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) |
| 28 |
6 23 24 26 27
|
syl112anc |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ) → ( 𝑀 ‘ ∪ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ) = Σ* 𝑥 ∈ 𝐵 ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) |
| 29 |
5 28
|
eqtr3id |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ) → ( 𝑀 ‘ ( ∪ 𝐵 ∩ 𝐴 ) ) = Σ* 𝑥 ∈ 𝐵 ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) |