Metamath Proof Explorer


Theorem measinblem

Description: Lemma for measinb . (Contributed by Thierry Arnoux, 2-Jun-2017)

Ref Expression
Assertion measinblem ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 ) ) → ( 𝑀 ‘ ( 𝐵𝐴 ) ) = Σ* 𝑥𝐵 ( 𝑀 ‘ ( 𝑥𝐴 ) ) )

Proof

Step Hyp Ref Expression
1 iunin1 𝑥𝐵 ( 𝑥𝐴 ) = ( 𝑥𝐵 𝑥𝐴 )
2 uniiun 𝐵 = 𝑥𝐵 𝑥
3 2 ineq1i ( 𝐵𝐴 ) = ( 𝑥𝐵 𝑥𝐴 )
4 1 3 eqtr4i 𝑥𝐵 ( 𝑥𝐴 ) = ( 𝐵𝐴 )
5 4 fveq2i ( 𝑀 𝑥𝐵 ( 𝑥𝐴 ) ) = ( 𝑀 ‘ ( 𝐵𝐴 ) )
6 simplll ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 ) ) → 𝑀 ∈ ( measures ‘ 𝑆 ) )
7 nfv 𝑥 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 )
8 nfv 𝑥 𝐵 ≼ ω
9 nfdisj1 𝑥 Disj 𝑥𝐵 𝑥
10 8 9 nfan 𝑥 ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 )
11 7 10 nfan 𝑥 ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 ) )
12 simp1ll ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 ) ∧ 𝑥𝐵 ) → 𝑀 ∈ ( measures ‘ 𝑆 ) )
13 measbase ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ran sigAlgebra )
14 12 13 syl ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 ) ∧ 𝑥𝐵 ) → 𝑆 ran sigAlgebra )
15 simp3 ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 ) ∧ 𝑥𝐵 ) → 𝑥𝐵 )
16 simp1r ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 ) ∧ 𝑥𝐵 ) → 𝐵 ∈ 𝒫 𝑆 )
17 elelpwi ( ( 𝑥𝐵𝐵 ∈ 𝒫 𝑆 ) → 𝑥𝑆 )
18 15 16 17 syl2anc ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 ) ∧ 𝑥𝐵 ) → 𝑥𝑆 )
19 simp1lr ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 ) ∧ 𝑥𝐵 ) → 𝐴𝑆 )
20 inelsiga ( ( 𝑆 ran sigAlgebra ∧ 𝑥𝑆𝐴𝑆 ) → ( 𝑥𝐴 ) ∈ 𝑆 )
21 14 18 19 20 syl3anc ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 ) ∧ 𝑥𝐵 ) → ( 𝑥𝐴 ) ∈ 𝑆 )
22 21 3expia ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 ) ) → ( 𝑥𝐵 → ( 𝑥𝐴 ) ∈ 𝑆 ) )
23 11 22 ralrimi ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 ) ) → ∀ 𝑥𝐵 ( 𝑥𝐴 ) ∈ 𝑆 )
24 simprl ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 ) ) → 𝐵 ≼ ω )
25 disjin ( Disj 𝑥𝐵 𝑥Disj 𝑥𝐵 ( 𝑥𝐴 ) )
26 25 ad2antll ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 ) ) → Disj 𝑥𝐵 ( 𝑥𝐴 ) )
27 measvuni ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥𝐵 ( 𝑥𝐴 ) ∈ 𝑆 ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 ( 𝑥𝐴 ) ) ) → ( 𝑀 𝑥𝐵 ( 𝑥𝐴 ) ) = Σ* 𝑥𝐵 ( 𝑀 ‘ ( 𝑥𝐴 ) ) )
28 6 23 24 26 27 syl112anc ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 ) ) → ( 𝑀 𝑥𝐵 ( 𝑥𝐴 ) ) = Σ* 𝑥𝐵 ( 𝑀 ‘ ( 𝑥𝐴 ) ) )
29 5 28 eqtr3id ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥𝐵 𝑥 ) ) → ( 𝑀 ‘ ( 𝐵𝐴 ) ) = Σ* 𝑥𝐵 ( 𝑀 ‘ ( 𝑥𝐴 ) ) )