Step |
Hyp |
Ref |
Expression |
1 |
|
iunin1 |
⊢ ∪ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) = ( ∪ 𝑥 ∈ 𝐵 𝑥 ∩ 𝐴 ) |
2 |
|
uniiun |
⊢ ∪ 𝐵 = ∪ 𝑥 ∈ 𝐵 𝑥 |
3 |
2
|
ineq1i |
⊢ ( ∪ 𝐵 ∩ 𝐴 ) = ( ∪ 𝑥 ∈ 𝐵 𝑥 ∩ 𝐴 ) |
4 |
1 3
|
eqtr4i |
⊢ ∪ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) = ( ∪ 𝐵 ∩ 𝐴 ) |
5 |
4
|
fveq2i |
⊢ ( 𝑀 ‘ ∪ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ) = ( 𝑀 ‘ ( ∪ 𝐵 ∩ 𝐴 ) ) |
6 |
|
simplll |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ) → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
7 |
|
nfv |
⊢ Ⅎ 𝑥 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) |
8 |
|
nfv |
⊢ Ⅎ 𝑥 𝐵 ≼ ω |
9 |
|
nfdisj1 |
⊢ Ⅎ 𝑥 Disj 𝑥 ∈ 𝐵 𝑥 |
10 |
8 9
|
nfan |
⊢ Ⅎ 𝑥 ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) |
11 |
7 10
|
nfan |
⊢ Ⅎ 𝑥 ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ) |
12 |
|
simp1ll |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
13 |
|
measbase |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
14 |
12 13
|
syl |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
15 |
|
simp3 |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
16 |
|
simp1r |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐵 ∈ 𝒫 𝑆 ) |
17 |
|
elelpwi |
⊢ ( ( 𝑥 ∈ 𝐵 ∧ 𝐵 ∈ 𝒫 𝑆 ) → 𝑥 ∈ 𝑆 ) |
18 |
15 16 17
|
syl2anc |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝑆 ) |
19 |
|
simp1lr |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ∧ 𝑥 ∈ 𝐵 ) → 𝐴 ∈ 𝑆 ) |
20 |
|
inelsiga |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝑥 ∈ 𝑆 ∧ 𝐴 ∈ 𝑆 ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝑆 ) |
21 |
14 18 19 20
|
syl3anc |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑥 ∩ 𝐴 ) ∈ 𝑆 ) |
22 |
21
|
3expia |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ) → ( 𝑥 ∈ 𝐵 → ( 𝑥 ∩ 𝐴 ) ∈ 𝑆 ) ) |
23 |
11 22
|
ralrimi |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ) → ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ∈ 𝑆 ) |
24 |
|
simprl |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ) → 𝐵 ≼ ω ) |
25 |
|
disjin |
⊢ ( Disj 𝑥 ∈ 𝐵 𝑥 → Disj 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ) |
26 |
25
|
ad2antll |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ) → Disj 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ) |
27 |
|
measvuni |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ∈ 𝑆 ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ) ) → ( 𝑀 ‘ ∪ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ) = Σ* 𝑥 ∈ 𝐵 ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) |
28 |
6 23 24 26 27
|
syl112anc |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ) → ( 𝑀 ‘ ∪ 𝑥 ∈ 𝐵 ( 𝑥 ∩ 𝐴 ) ) = Σ* 𝑥 ∈ 𝐵 ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) |
29 |
5 28
|
eqtr3id |
⊢ ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) ∧ 𝐵 ∈ 𝒫 𝑆 ) ∧ ( 𝐵 ≼ ω ∧ Disj 𝑥 ∈ 𝐵 𝑥 ) ) → ( 𝑀 ‘ ( ∪ 𝐵 ∩ 𝐴 ) ) = Σ* 𝑥 ∈ 𝐵 ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) |