| Step |
Hyp |
Ref |
Expression |
| 1 |
|
simp2 |
|- ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) -> T e. U. ran sigAlgebra ) |
| 2 |
|
measfrge0 |
|- ( M e. ( measures ` S ) -> M : S --> ( 0 [,] +oo ) ) |
| 3 |
2
|
3ad2ant1 |
|- ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) -> M : S --> ( 0 [,] +oo ) ) |
| 4 |
|
simp3 |
|- ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) -> T C_ S ) |
| 5 |
3 4
|
fssresd |
|- ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) -> ( M |` T ) : T --> ( 0 [,] +oo ) ) |
| 6 |
|
0elsiga |
|- ( T e. U. ran sigAlgebra -> (/) e. T ) |
| 7 |
|
fvres |
|- ( (/) e. T -> ( ( M |` T ) ` (/) ) = ( M ` (/) ) ) |
| 8 |
1 6 7
|
3syl |
|- ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) -> ( ( M |` T ) ` (/) ) = ( M ` (/) ) ) |
| 9 |
|
measvnul |
|- ( M e. ( measures ` S ) -> ( M ` (/) ) = 0 ) |
| 10 |
9
|
3ad2ant1 |
|- ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) -> ( M ` (/) ) = 0 ) |
| 11 |
8 10
|
eqtrd |
|- ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) -> ( ( M |` T ) ` (/) ) = 0 ) |
| 12 |
|
simp11 |
|- ( ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) /\ x e. ~P T /\ ( x ~<_ _om /\ Disj_ y e. x y ) ) -> M e. ( measures ` S ) ) |
| 13 |
|
simp13 |
|- ( ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) /\ x e. ~P T /\ ( x ~<_ _om /\ Disj_ y e. x y ) ) -> T C_ S ) |
| 14 |
|
simp2 |
|- ( ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) /\ x e. ~P T /\ ( x ~<_ _om /\ Disj_ y e. x y ) ) -> x e. ~P T ) |
| 15 |
|
sspw |
|- ( T C_ S -> ~P T C_ ~P S ) |
| 16 |
15
|
sselda |
|- ( ( T C_ S /\ x e. ~P T ) -> x e. ~P S ) |
| 17 |
13 14 16
|
syl2anc |
|- ( ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) /\ x e. ~P T /\ ( x ~<_ _om /\ Disj_ y e. x y ) ) -> x e. ~P S ) |
| 18 |
|
simp3 |
|- ( ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) /\ x e. ~P T /\ ( x ~<_ _om /\ Disj_ y e. x y ) ) -> ( x ~<_ _om /\ Disj_ y e. x y ) ) |
| 19 |
|
measvun |
|- ( ( M e. ( measures ` S ) /\ x e. ~P S /\ ( x ~<_ _om /\ Disj_ y e. x y ) ) -> ( M ` U. x ) = sum* y e. x ( M ` y ) ) |
| 20 |
12 17 18 19
|
syl3anc |
|- ( ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) /\ x e. ~P T /\ ( x ~<_ _om /\ Disj_ y e. x y ) ) -> ( M ` U. x ) = sum* y e. x ( M ` y ) ) |
| 21 |
1
|
3ad2ant1 |
|- ( ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) /\ x e. ~P T /\ ( x ~<_ _om /\ Disj_ y e. x y ) ) -> T e. U. ran sigAlgebra ) |
| 22 |
|
simp3l |
|- ( ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) /\ x e. ~P T /\ ( x ~<_ _om /\ Disj_ y e. x y ) ) -> x ~<_ _om ) |
| 23 |
|
sigaclcu |
|- ( ( T e. U. ran sigAlgebra /\ x e. ~P T /\ x ~<_ _om ) -> U. x e. T ) |
| 24 |
21 14 22 23
|
syl3anc |
|- ( ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) /\ x e. ~P T /\ ( x ~<_ _om /\ Disj_ y e. x y ) ) -> U. x e. T ) |
| 25 |
24
|
fvresd |
|- ( ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) /\ x e. ~P T /\ ( x ~<_ _om /\ Disj_ y e. x y ) ) -> ( ( M |` T ) ` U. x ) = ( M ` U. x ) ) |
| 26 |
|
elpwi |
|- ( x e. ~P T -> x C_ T ) |
| 27 |
26
|
sselda |
|- ( ( x e. ~P T /\ y e. x ) -> y e. T ) |
| 28 |
27
|
adantll |
|- ( ( ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) /\ x e. ~P T ) /\ y e. x ) -> y e. T ) |
| 29 |
28
|
fvresd |
|- ( ( ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) /\ x e. ~P T ) /\ y e. x ) -> ( ( M |` T ) ` y ) = ( M ` y ) ) |
| 30 |
29
|
esumeq2dv |
|- ( ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) /\ x e. ~P T ) -> sum* y e. x ( ( M |` T ) ` y ) = sum* y e. x ( M ` y ) ) |
| 31 |
30
|
3adant3 |
|- ( ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) /\ x e. ~P T /\ ( x ~<_ _om /\ Disj_ y e. x y ) ) -> sum* y e. x ( ( M |` T ) ` y ) = sum* y e. x ( M ` y ) ) |
| 32 |
20 25 31
|
3eqtr4d |
|- ( ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) /\ x e. ~P T /\ ( x ~<_ _om /\ Disj_ y e. x y ) ) -> ( ( M |` T ) ` U. x ) = sum* y e. x ( ( M |` T ) ` y ) ) |
| 33 |
32
|
3expia |
|- ( ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) /\ x e. ~P T ) -> ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( ( M |` T ) ` U. x ) = sum* y e. x ( ( M |` T ) ` y ) ) ) |
| 34 |
33
|
ralrimiva |
|- ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) -> A. x e. ~P T ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( ( M |` T ) ` U. x ) = sum* y e. x ( ( M |` T ) ` y ) ) ) |
| 35 |
5 11 34
|
3jca |
|- ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) -> ( ( M |` T ) : T --> ( 0 [,] +oo ) /\ ( ( M |` T ) ` (/) ) = 0 /\ A. x e. ~P T ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( ( M |` T ) ` U. x ) = sum* y e. x ( ( M |` T ) ` y ) ) ) ) |
| 36 |
|
ismeas |
|- ( T e. U. ran sigAlgebra -> ( ( M |` T ) e. ( measures ` T ) <-> ( ( M |` T ) : T --> ( 0 [,] +oo ) /\ ( ( M |` T ) ` (/) ) = 0 /\ A. x e. ~P T ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( ( M |` T ) ` U. x ) = sum* y e. x ( ( M |` T ) ` y ) ) ) ) ) |
| 37 |
36
|
biimprd |
|- ( T e. U. ran sigAlgebra -> ( ( ( M |` T ) : T --> ( 0 [,] +oo ) /\ ( ( M |` T ) ` (/) ) = 0 /\ A. x e. ~P T ( ( x ~<_ _om /\ Disj_ y e. x y ) -> ( ( M |` T ) ` U. x ) = sum* y e. x ( ( M |` T ) ` y ) ) ) -> ( M |` T ) e. ( measures ` T ) ) ) |
| 38 |
1 35 37
|
sylc |
|- ( ( M e. ( measures ` S ) /\ T e. U. ran sigAlgebra /\ T C_ S ) -> ( M |` T ) e. ( measures ` T ) ) |