| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resmpt3 |
|- ( ( x e. S |-> ( M ` ( x i^i A ) ) ) |` ( S i^i ~P A ) ) = ( x e. ( S i^i ( S i^i ~P A ) ) |-> ( M ` ( x i^i A ) ) ) |
| 2 |
|
inin |
|- ( S i^i ( S i^i ~P A ) ) = ( S i^i ~P A ) |
| 3 |
|
eqid |
|- ( M ` ( x i^i A ) ) = ( M ` ( x i^i A ) ) |
| 4 |
2 3
|
mpteq12i |
|- ( x e. ( S i^i ( S i^i ~P A ) ) |-> ( M ` ( x i^i A ) ) ) = ( x e. ( S i^i ~P A ) |-> ( M ` ( x i^i A ) ) ) |
| 5 |
1 4
|
eqtri |
|- ( ( x e. S |-> ( M ` ( x i^i A ) ) ) |` ( S i^i ~P A ) ) = ( x e. ( S i^i ~P A ) |-> ( M ` ( x i^i A ) ) ) |
| 6 |
|
measinb |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( x e. S |-> ( M ` ( x i^i A ) ) ) e. ( measures ` S ) ) |
| 7 |
|
measbase |
|- ( M e. ( measures ` S ) -> S e. U. ran sigAlgebra ) |
| 8 |
|
sigainb |
|- ( ( S e. U. ran sigAlgebra /\ A e. S ) -> ( S i^i ~P A ) e. ( sigAlgebra ` A ) ) |
| 9 |
|
elrnsiga |
|- ( ( S i^i ~P A ) e. ( sigAlgebra ` A ) -> ( S i^i ~P A ) e. U. ran sigAlgebra ) |
| 10 |
8 9
|
syl |
|- ( ( S e. U. ran sigAlgebra /\ A e. S ) -> ( S i^i ~P A ) e. U. ran sigAlgebra ) |
| 11 |
7 10
|
sylan |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( S i^i ~P A ) e. U. ran sigAlgebra ) |
| 12 |
|
inss1 |
|- ( S i^i ~P A ) C_ S |
| 13 |
12
|
a1i |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( S i^i ~P A ) C_ S ) |
| 14 |
|
measres |
|- ( ( ( x e. S |-> ( M ` ( x i^i A ) ) ) e. ( measures ` S ) /\ ( S i^i ~P A ) e. U. ran sigAlgebra /\ ( S i^i ~P A ) C_ S ) -> ( ( x e. S |-> ( M ` ( x i^i A ) ) ) |` ( S i^i ~P A ) ) e. ( measures ` ( S i^i ~P A ) ) ) |
| 15 |
6 11 13 14
|
syl3anc |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( ( x e. S |-> ( M ` ( x i^i A ) ) ) |` ( S i^i ~P A ) ) e. ( measures ` ( S i^i ~P A ) ) ) |
| 16 |
5 15
|
eqeltrrid |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( x e. ( S i^i ~P A ) |-> ( M ` ( x i^i A ) ) ) e. ( measures ` ( S i^i ~P A ) ) ) |