Metamath Proof Explorer


Theorem measinb2

Description: Building a measure restricted to the intersection with a given set. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion measinb2
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( x e. ( S i^i ~P A ) |-> ( M ` ( x i^i A ) ) ) e. ( measures ` ( S i^i ~P A ) ) )

Proof

Step Hyp Ref Expression
1 resmpt3
 |-  ( ( x e. S |-> ( M ` ( x i^i A ) ) ) |` ( S i^i ~P A ) ) = ( x e. ( S i^i ( S i^i ~P A ) ) |-> ( M ` ( x i^i A ) ) )
2 inin
 |-  ( S i^i ( S i^i ~P A ) ) = ( S i^i ~P A )
3 eqid
 |-  ( M ` ( x i^i A ) ) = ( M ` ( x i^i A ) )
4 2 3 mpteq12i
 |-  ( x e. ( S i^i ( S i^i ~P A ) ) |-> ( M ` ( x i^i A ) ) ) = ( x e. ( S i^i ~P A ) |-> ( M ` ( x i^i A ) ) )
5 1 4 eqtri
 |-  ( ( x e. S |-> ( M ` ( x i^i A ) ) ) |` ( S i^i ~P A ) ) = ( x e. ( S i^i ~P A ) |-> ( M ` ( x i^i A ) ) )
6 measinb
 |-  ( ( M e. ( measures ` S ) /\ A e. S ) -> ( x e. S |-> ( M ` ( x i^i A ) ) ) e. ( measures ` S ) )
7 measbase
 |-  ( M e. ( measures ` S ) -> S e. U. ran sigAlgebra )
8 sigainb
 |-  ( ( S e. U. ran sigAlgebra /\ A e. S ) -> ( S i^i ~P A ) e. ( sigAlgebra ` A ) )
9 elrnsiga
 |-  ( ( S i^i ~P A ) e. ( sigAlgebra ` A ) -> ( S i^i ~P A ) e. U. ran sigAlgebra )
10 8 9 syl
 |-  ( ( S e. U. ran sigAlgebra /\ A e. S ) -> ( S i^i ~P A ) e. U. ran sigAlgebra )
11 7 10 sylan
 |-  ( ( M e. ( measures ` S ) /\ A e. S ) -> ( S i^i ~P A ) e. U. ran sigAlgebra )
12 inss1
 |-  ( S i^i ~P A ) C_ S
13 12 a1i
 |-  ( ( M e. ( measures ` S ) /\ A e. S ) -> ( S i^i ~P A ) C_ S )
14 measres
 |-  ( ( ( x e. S |-> ( M ` ( x i^i A ) ) ) e. ( measures ` S ) /\ ( S i^i ~P A ) e. U. ran sigAlgebra /\ ( S i^i ~P A ) C_ S ) -> ( ( x e. S |-> ( M ` ( x i^i A ) ) ) |` ( S i^i ~P A ) ) e. ( measures ` ( S i^i ~P A ) ) )
15 6 11 13 14 syl3anc
 |-  ( ( M e. ( measures ` S ) /\ A e. S ) -> ( ( x e. S |-> ( M ` ( x i^i A ) ) ) |` ( S i^i ~P A ) ) e. ( measures ` ( S i^i ~P A ) ) )
16 5 15 eqeltrrid
 |-  ( ( M e. ( measures ` S ) /\ A e. S ) -> ( x e. ( S i^i ~P A ) |-> ( M ` ( x i^i A ) ) ) e. ( measures ` ( S i^i ~P A ) ) )