| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							resres | 
							 |-  ( ( ( x e. A |-> C ) |` A ) |` B ) = ( ( x e. A |-> C ) |` ( A i^i B ) )  | 
						
						
							| 2 | 
							
								
							 | 
							ssid | 
							 |-  A C_ A  | 
						
						
							| 3 | 
							
								
							 | 
							resmpt | 
							 |-  ( A C_ A -> ( ( x e. A |-> C ) |` A ) = ( x e. A |-> C ) )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							ax-mp | 
							 |-  ( ( x e. A |-> C ) |` A ) = ( x e. A |-> C )  | 
						
						
							| 5 | 
							
								4
							 | 
							reseq1i | 
							 |-  ( ( ( x e. A |-> C ) |` A ) |` B ) = ( ( x e. A |-> C ) |` B )  | 
						
						
							| 6 | 
							
								
							 | 
							inss1 | 
							 |-  ( A i^i B ) C_ A  | 
						
						
							| 7 | 
							
								
							 | 
							resmpt | 
							 |-  ( ( A i^i B ) C_ A -> ( ( x e. A |-> C ) |` ( A i^i B ) ) = ( x e. ( A i^i B ) |-> C ) )  | 
						
						
							| 8 | 
							
								6 7
							 | 
							ax-mp | 
							 |-  ( ( x e. A |-> C ) |` ( A i^i B ) ) = ( x e. ( A i^i B ) |-> C )  | 
						
						
							| 9 | 
							
								1 5 8
							 | 
							3eqtr3i | 
							 |-  ( ( x e. A |-> C ) |` B ) = ( x e. ( A i^i B ) |-> C )  |