| Step |
Hyp |
Ref |
Expression |
| 1 |
|
resmpt3 |
⊢ ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ↾ ( 𝑆 ∩ 𝒫 𝐴 ) ) = ( 𝑥 ∈ ( 𝑆 ∩ ( 𝑆 ∩ 𝒫 𝐴 ) ) ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) |
| 2 |
|
inin |
⊢ ( 𝑆 ∩ ( 𝑆 ∩ 𝒫 𝐴 ) ) = ( 𝑆 ∩ 𝒫 𝐴 ) |
| 3 |
|
eqid |
⊢ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) |
| 4 |
2 3
|
mpteq12i |
⊢ ( 𝑥 ∈ ( 𝑆 ∩ ( 𝑆 ∩ 𝒫 𝐴 ) ) ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) = ( 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) |
| 5 |
1 4
|
eqtri |
⊢ ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ↾ ( 𝑆 ∩ 𝒫 𝐴 ) ) = ( 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) |
| 6 |
|
measinb |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ∈ ( measures ‘ 𝑆 ) ) |
| 7 |
|
measbase |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 8 |
|
sigainb |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) → ( 𝑆 ∩ 𝒫 𝐴 ) ∈ ( sigAlgebra ‘ 𝐴 ) ) |
| 9 |
|
elrnsiga |
⊢ ( ( 𝑆 ∩ 𝒫 𝐴 ) ∈ ( sigAlgebra ‘ 𝐴 ) → ( 𝑆 ∩ 𝒫 𝐴 ) ∈ ∪ ran sigAlgebra ) |
| 10 |
8 9
|
syl |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ) → ( 𝑆 ∩ 𝒫 𝐴 ) ∈ ∪ ran sigAlgebra ) |
| 11 |
7 10
|
sylan |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → ( 𝑆 ∩ 𝒫 𝐴 ) ∈ ∪ ran sigAlgebra ) |
| 12 |
|
inss1 |
⊢ ( 𝑆 ∩ 𝒫 𝐴 ) ⊆ 𝑆 |
| 13 |
12
|
a1i |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → ( 𝑆 ∩ 𝒫 𝐴 ) ⊆ 𝑆 ) |
| 14 |
|
measres |
⊢ ( ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ∈ ( measures ‘ 𝑆 ) ∧ ( 𝑆 ∩ 𝒫 𝐴 ) ∈ ∪ ran sigAlgebra ∧ ( 𝑆 ∩ 𝒫 𝐴 ) ⊆ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ↾ ( 𝑆 ∩ 𝒫 𝐴 ) ) ∈ ( measures ‘ ( 𝑆 ∩ 𝒫 𝐴 ) ) ) |
| 15 |
6 11 13 14
|
syl3anc |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → ( ( 𝑥 ∈ 𝑆 ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ↾ ( 𝑆 ∩ 𝒫 𝐴 ) ) ∈ ( measures ‘ ( 𝑆 ∩ 𝒫 𝐴 ) ) ) |
| 16 |
5 15
|
eqeltrrid |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → ( 𝑥 ∈ ( 𝑆 ∩ 𝒫 𝐴 ) ↦ ( 𝑀 ‘ ( 𝑥 ∩ 𝐴 ) ) ) ∈ ( measures ‘ ( 𝑆 ∩ 𝒫 𝐴 ) ) ) |