Metamath Proof Explorer


Theorem measdivcst

Description: Division of a measure by a positive constant is a measure. (Contributed by Thierry Arnoux, 25-Dec-2016) (Revised by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Assertion measdivcst ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( 𝑀f/c /𝑒 𝐴 ) ∈ ( measures ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 ofcfval3 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( 𝑀f/c /𝑒 𝐴 ) = ( 𝑥 ∈ dom 𝑀 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) )
2 measfrge0 ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) )
3 2 fdmd ( 𝑀 ∈ ( measures ‘ 𝑆 ) → dom 𝑀 = 𝑆 )
4 3 adantr ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → dom 𝑀 = 𝑆 )
5 4 mpteq1d ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( 𝑥 ∈ dom 𝑀 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) = ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) )
6 1 5 eqtrd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( 𝑀f/c /𝑒 𝐴 ) = ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) )
7 measvxrge0 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑥𝑆 ) → ( 𝑀𝑥 ) ∈ ( 0 [,] +∞ ) )
8 7 adantlr ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑥𝑆 ) → ( 𝑀𝑥 ) ∈ ( 0 [,] +∞ ) )
9 simplr ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑥𝑆 ) → 𝐴 ∈ ℝ+ )
10 8 9 xrpxdivcld ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑥𝑆 ) → ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ∈ ( 0 [,] +∞ ) )
11 10 fmpttd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) : 𝑆 ⟶ ( 0 [,] +∞ ) )
12 measbase ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ran sigAlgebra )
13 0elsiga ( 𝑆 ran sigAlgebra → ∅ ∈ 𝑆 )
14 12 13 syl ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ∅ ∈ 𝑆 )
15 14 adantr ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ∅ ∈ 𝑆 )
16 ovex ( ( 𝑀 ‘ ∅ ) /𝑒 𝐴 ) ∈ V
17 fveq2 ( 𝑥 = ∅ → ( 𝑀𝑥 ) = ( 𝑀 ‘ ∅ ) )
18 17 oveq1d ( 𝑥 = ∅ → ( ( 𝑀𝑥 ) /𝑒 𝐴 ) = ( ( 𝑀 ‘ ∅ ) /𝑒 𝐴 ) )
19 eqid ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) = ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) )
20 18 19 fvmptg ( ( ∅ ∈ 𝑆 ∧ ( ( 𝑀 ‘ ∅ ) /𝑒 𝐴 ) ∈ V ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ ∅ ) = ( ( 𝑀 ‘ ∅ ) /𝑒 𝐴 ) )
21 15 16 20 sylancl ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ ∅ ) = ( ( 𝑀 ‘ ∅ ) /𝑒 𝐴 ) )
22 measvnul ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( 𝑀 ‘ ∅ ) = 0 )
23 22 oveq1d ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( ( 𝑀 ‘ ∅ ) /𝑒 𝐴 ) = ( 0 /𝑒 𝐴 ) )
24 xdiv0rp ( 𝐴 ∈ ℝ+ → ( 0 /𝑒 𝐴 ) = 0 )
25 23 24 sylan9eq ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( ( 𝑀 ‘ ∅ ) /𝑒 𝐴 ) = 0 )
26 21 25 eqtrd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ ∅ ) = 0 )
27 simpll ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) )
28 simplr ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → 𝑦 ∈ 𝒫 𝑆 )
29 simprl ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → 𝑦 ≼ ω )
30 simprr ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → Disj 𝑧𝑦 𝑧 )
31 vex 𝑦 ∈ V
32 31 a1i ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) → 𝑦 ∈ V )
33 simplll ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ 𝑧𝑦 ) → 𝑀 ∈ ( measures ‘ 𝑆 ) )
34 velpw ( 𝑦 ∈ 𝒫 𝑆𝑦𝑆 )
35 ssel2 ( ( 𝑦𝑆𝑧𝑦 ) → 𝑧𝑆 )
36 34 35 sylanb ( ( 𝑦 ∈ 𝒫 𝑆𝑧𝑦 ) → 𝑧𝑆 )
37 36 adantll ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ 𝑧𝑦 ) → 𝑧𝑆 )
38 measvxrge0 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑧𝑆 ) → ( 𝑀𝑧 ) ∈ ( 0 [,] +∞ ) )
39 33 37 38 syl2anc ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ 𝑧𝑦 ) → ( 𝑀𝑧 ) ∈ ( 0 [,] +∞ ) )
40 simplr ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) → 𝐴 ∈ ℝ+ )
41 32 39 40 esumdivc ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) → ( Σ* 𝑧𝑦 ( 𝑀𝑧 ) /𝑒 𝐴 ) = Σ* 𝑧𝑦 ( ( 𝑀𝑧 ) /𝑒 𝐴 ) )
42 41 3ad2antr1 ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( Σ* 𝑧𝑦 ( 𝑀𝑧 ) /𝑒 𝐴 ) = Σ* 𝑧𝑦 ( ( 𝑀𝑧 ) /𝑒 𝐴 ) )
43 12 ad2antrr ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → 𝑆 ran sigAlgebra )
44 simpr1 ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → 𝑦 ∈ 𝒫 𝑆 )
45 simpr2 ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → 𝑦 ≼ ω )
46 sigaclcu ( ( 𝑆 ran sigAlgebra ∧ 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ) → 𝑦𝑆 )
47 43 44 45 46 syl3anc ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → 𝑦𝑆 )
48 fveq2 ( 𝑥 = 𝑦 → ( 𝑀𝑥 ) = ( 𝑀 𝑦 ) )
49 48 oveq1d ( 𝑥 = 𝑦 → ( ( 𝑀𝑥 ) /𝑒 𝐴 ) = ( ( 𝑀 𝑦 ) /𝑒 𝐴 ) )
50 ovex ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ∈ V
51 49 19 50 fvmpt3i ( 𝑦𝑆 → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = ( ( 𝑀 𝑦 ) /𝑒 𝐴 ) )
52 47 51 syl ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = ( ( 𝑀 𝑦 ) /𝑒 𝐴 ) )
53 simpll ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → 𝑀 ∈ ( measures ‘ 𝑆 ) )
54 simpr3 ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → Disj 𝑧𝑦 𝑧 )
55 measvun ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑦 ∈ 𝒫 𝑆 ∧ ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( 𝑀 𝑦 ) = Σ* 𝑧𝑦 ( 𝑀𝑧 ) )
56 53 44 45 54 55 syl112anc ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( 𝑀 𝑦 ) = Σ* 𝑧𝑦 ( 𝑀𝑧 ) )
57 56 oveq1d ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( ( 𝑀 𝑦 ) /𝑒 𝐴 ) = ( Σ* 𝑧𝑦 ( 𝑀𝑧 ) /𝑒 𝐴 ) )
58 52 57 eqtrd ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = ( Σ* 𝑧𝑦 ( 𝑀𝑧 ) /𝑒 𝐴 ) )
59 fveq2 ( 𝑥 = 𝑧 → ( 𝑀𝑥 ) = ( 𝑀𝑧 ) )
60 59 oveq1d ( 𝑥 = 𝑧 → ( ( 𝑀𝑥 ) /𝑒 𝐴 ) = ( ( 𝑀𝑧 ) /𝑒 𝐴 ) )
61 60 19 50 fvmpt3i ( 𝑧𝑆 → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) = ( ( 𝑀𝑧 ) /𝑒 𝐴 ) )
62 36 61 syl ( ( 𝑦 ∈ 𝒫 𝑆𝑧𝑦 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) = ( ( 𝑀𝑧 ) /𝑒 𝐴 ) )
63 62 esumeq2dv ( 𝑦 ∈ 𝒫 𝑆 → Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) = Σ* 𝑧𝑦 ( ( 𝑀𝑧 ) /𝑒 𝐴 ) )
64 44 63 syl ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) = Σ* 𝑧𝑦 ( ( 𝑀𝑧 ) /𝑒 𝐴 ) )
65 42 58 64 3eqtr4d ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) )
66 27 28 29 30 65 syl13anc ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) )
67 66 ex ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) → ( ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) ) )
68 67 ralrimiva ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ∀ 𝑦 ∈ 𝒫 𝑆 ( ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) ) )
69 ismeas ( 𝑆 ran sigAlgebra → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ∈ ( measures ‘ 𝑆 ) ↔ ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ ∅ ) = 0 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) ) ) ) )
70 12 69 syl ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ∈ ( measures ‘ 𝑆 ) ↔ ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ ∅ ) = 0 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) ) ) ) )
71 70 biimprd ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ ∅ ) = 0 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) ) ) → ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ∈ ( measures ‘ 𝑆 ) ) )
72 71 adantr ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ ∅ ) = 0 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) ) ) → ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ∈ ( measures ‘ 𝑆 ) ) )
73 11 26 68 72 mp3and ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ∈ ( measures ‘ 𝑆 ) )
74 6 73 eqeltrd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( 𝑀f/c /𝑒 𝐴 ) ∈ ( measures ‘ 𝑆 ) )