Metamath Proof Explorer


Theorem esumdivc

Description: An extended sum divided by a constant. (Contributed by Thierry Arnoux, 6-Jul-2017)

Ref Expression
Hypotheses esumdivc.a ( 𝜑𝐴𝑉 )
esumdivc.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
esumdivc.c ( 𝜑𝐶 ∈ ℝ+ )
Assertion esumdivc ( 𝜑 → ( Σ* 𝑘𝐴 𝐵 /𝑒 𝐶 ) = Σ* 𝑘𝐴 ( 𝐵 /𝑒 𝐶 ) )

Proof

Step Hyp Ref Expression
1 esumdivc.a ( 𝜑𝐴𝑉 )
2 esumdivc.b ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) )
3 esumdivc.c ( 𝜑𝐶 ∈ ℝ+ )
4 1red ( 𝜑 → 1 ∈ ℝ )
5 3 rpred ( 𝜑𝐶 ∈ ℝ )
6 3 rpne0d ( 𝜑𝐶 ≠ 0 )
7 rexdiv ( ( 1 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ( 1 /𝑒 𝐶 ) = ( 1 / 𝐶 ) )
8 4 5 6 7 syl3anc ( 𝜑 → ( 1 /𝑒 𝐶 ) = ( 1 / 𝐶 ) )
9 ioorp ( 0 (,) +∞ ) = ℝ+
10 ioossico ( 0 (,) +∞ ) ⊆ ( 0 [,) +∞ )
11 9 10 eqsstrri + ⊆ ( 0 [,) +∞ )
12 3 rpreccld ( 𝜑 → ( 1 / 𝐶 ) ∈ ℝ+ )
13 11 12 sseldi ( 𝜑 → ( 1 / 𝐶 ) ∈ ( 0 [,) +∞ ) )
14 8 13 eqeltrd ( 𝜑 → ( 1 /𝑒 𝐶 ) ∈ ( 0 [,) +∞ ) )
15 1 2 14 esummulc1 ( 𝜑 → ( Σ* 𝑘𝐴 𝐵 ·e ( 1 /𝑒 𝐶 ) ) = Σ* 𝑘𝐴 ( 𝐵 ·e ( 1 /𝑒 𝐶 ) ) )
16 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
17 2 ralrimiva ( 𝜑 → ∀ 𝑘𝐴 𝐵 ∈ ( 0 [,] +∞ ) )
18 nfcv 𝑘 𝐴
19 18 esumcl ( ( 𝐴𝑉 ∧ ∀ 𝑘𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘𝐴 𝐵 ∈ ( 0 [,] +∞ ) )
20 1 17 19 syl2anc ( 𝜑 → Σ* 𝑘𝐴 𝐵 ∈ ( 0 [,] +∞ ) )
21 16 20 sseldi ( 𝜑 → Σ* 𝑘𝐴 𝐵 ∈ ℝ* )
22 xdivrec ( ( Σ* 𝑘𝐴 𝐵 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ( Σ* 𝑘𝐴 𝐵 /𝑒 𝐶 ) = ( Σ* 𝑘𝐴 𝐵 ·e ( 1 /𝑒 𝐶 ) ) )
23 21 5 6 22 syl3anc ( 𝜑 → ( Σ* 𝑘𝐴 𝐵 /𝑒 𝐶 ) = ( Σ* 𝑘𝐴 𝐵 ·e ( 1 /𝑒 𝐶 ) ) )
24 16 2 sseldi ( ( 𝜑𝑘𝐴 ) → 𝐵 ∈ ℝ* )
25 5 adantr ( ( 𝜑𝑘𝐴 ) → 𝐶 ∈ ℝ )
26 6 adantr ( ( 𝜑𝑘𝐴 ) → 𝐶 ≠ 0 )
27 xdivrec ( ( 𝐵 ∈ ℝ*𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ( 𝐵 /𝑒 𝐶 ) = ( 𝐵 ·e ( 1 /𝑒 𝐶 ) ) )
28 24 25 26 27 syl3anc ( ( 𝜑𝑘𝐴 ) → ( 𝐵 /𝑒 𝐶 ) = ( 𝐵 ·e ( 1 /𝑒 𝐶 ) ) )
29 28 esumeq2dv ( 𝜑 → Σ* 𝑘𝐴 ( 𝐵 /𝑒 𝐶 ) = Σ* 𝑘𝐴 ( 𝐵 ·e ( 1 /𝑒 𝐶 ) ) )
30 15 23 29 3eqtr4d ( 𝜑 → ( Σ* 𝑘𝐴 𝐵 /𝑒 𝐶 ) = Σ* 𝑘𝐴 ( 𝐵 /𝑒 𝐶 ) )