| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esumdivc.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 2 |
|
esumdivc.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 3 |
|
esumdivc.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
| 4 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
| 5 |
3
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
| 6 |
3
|
rpne0d |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
| 7 |
|
rexdiv |
⊢ ( ( 1 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ( 1 /𝑒 𝐶 ) = ( 1 / 𝐶 ) ) |
| 8 |
4 5 6 7
|
syl3anc |
⊢ ( 𝜑 → ( 1 /𝑒 𝐶 ) = ( 1 / 𝐶 ) ) |
| 9 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
| 10 |
|
ioossico |
⊢ ( 0 (,) +∞ ) ⊆ ( 0 [,) +∞ ) |
| 11 |
9 10
|
eqsstrri |
⊢ ℝ+ ⊆ ( 0 [,) +∞ ) |
| 12 |
3
|
rpreccld |
⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ℝ+ ) |
| 13 |
11 12
|
sselid |
⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ( 0 [,) +∞ ) ) |
| 14 |
8 13
|
eqeltrd |
⊢ ( 𝜑 → ( 1 /𝑒 𝐶 ) ∈ ( 0 [,) +∞ ) ) |
| 15 |
1 2 14
|
esummulc1 |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ 𝐴 𝐵 ·e ( 1 /𝑒 𝐶 ) ) = Σ* 𝑘 ∈ 𝐴 ( 𝐵 ·e ( 1 /𝑒 𝐶 ) ) ) |
| 16 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 17 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 18 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
| 19 |
18
|
esumcl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 20 |
1 17 19
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
| 21 |
16 20
|
sselid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ℝ* ) |
| 22 |
|
xdivrec |
⊢ ( ( Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ( Σ* 𝑘 ∈ 𝐴 𝐵 /𝑒 𝐶 ) = ( Σ* 𝑘 ∈ 𝐴 𝐵 ·e ( 1 /𝑒 𝐶 ) ) ) |
| 23 |
21 5 6 22
|
syl3anc |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ 𝐴 𝐵 /𝑒 𝐶 ) = ( Σ* 𝑘 ∈ 𝐴 𝐵 ·e ( 1 /𝑒 𝐶 ) ) ) |
| 24 |
16 2
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
| 25 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
| 26 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ≠ 0 ) |
| 27 |
|
xdivrec |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ( 𝐵 /𝑒 𝐶 ) = ( 𝐵 ·e ( 1 /𝑒 𝐶 ) ) ) |
| 28 |
24 25 26 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 /𝑒 𝐶 ) = ( 𝐵 ·e ( 1 /𝑒 𝐶 ) ) ) |
| 29 |
28
|
esumeq2dv |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 ( 𝐵 /𝑒 𝐶 ) = Σ* 𝑘 ∈ 𝐴 ( 𝐵 ·e ( 1 /𝑒 𝐶 ) ) ) |
| 30 |
15 23 29
|
3eqtr4d |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ 𝐴 𝐵 /𝑒 𝐶 ) = Σ* 𝑘 ∈ 𝐴 ( 𝐵 /𝑒 𝐶 ) ) |