Step |
Hyp |
Ref |
Expression |
1 |
|
esumdivc.a |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
2 |
|
esumdivc.b |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ( 0 [,] +∞ ) ) |
3 |
|
esumdivc.c |
⊢ ( 𝜑 → 𝐶 ∈ ℝ+ ) |
4 |
|
1red |
⊢ ( 𝜑 → 1 ∈ ℝ ) |
5 |
3
|
rpred |
⊢ ( 𝜑 → 𝐶 ∈ ℝ ) |
6 |
3
|
rpne0d |
⊢ ( 𝜑 → 𝐶 ≠ 0 ) |
7 |
|
rexdiv |
⊢ ( ( 1 ∈ ℝ ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ( 1 /𝑒 𝐶 ) = ( 1 / 𝐶 ) ) |
8 |
4 5 6 7
|
syl3anc |
⊢ ( 𝜑 → ( 1 /𝑒 𝐶 ) = ( 1 / 𝐶 ) ) |
9 |
|
ioorp |
⊢ ( 0 (,) +∞ ) = ℝ+ |
10 |
|
ioossico |
⊢ ( 0 (,) +∞ ) ⊆ ( 0 [,) +∞ ) |
11 |
9 10
|
eqsstrri |
⊢ ℝ+ ⊆ ( 0 [,) +∞ ) |
12 |
3
|
rpreccld |
⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ℝ+ ) |
13 |
11 12
|
sselid |
⊢ ( 𝜑 → ( 1 / 𝐶 ) ∈ ( 0 [,) +∞ ) ) |
14 |
8 13
|
eqeltrd |
⊢ ( 𝜑 → ( 1 /𝑒 𝐶 ) ∈ ( 0 [,) +∞ ) ) |
15 |
1 2 14
|
esummulc1 |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ 𝐴 𝐵 ·e ( 1 /𝑒 𝐶 ) ) = Σ* 𝑘 ∈ 𝐴 ( 𝐵 ·e ( 1 /𝑒 𝐶 ) ) ) |
16 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
17 |
2
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
18 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
19 |
18
|
esumcl |
⊢ ( ( 𝐴 ∈ 𝑉 ∧ ∀ 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
20 |
1 17 19
|
syl2anc |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ( 0 [,] +∞ ) ) |
21 |
16 20
|
sselid |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ℝ* ) |
22 |
|
xdivrec |
⊢ ( ( Σ* 𝑘 ∈ 𝐴 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ( Σ* 𝑘 ∈ 𝐴 𝐵 /𝑒 𝐶 ) = ( Σ* 𝑘 ∈ 𝐴 𝐵 ·e ( 1 /𝑒 𝐶 ) ) ) |
23 |
21 5 6 22
|
syl3anc |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ 𝐴 𝐵 /𝑒 𝐶 ) = ( Σ* 𝑘 ∈ 𝐴 𝐵 ·e ( 1 /𝑒 𝐶 ) ) ) |
24 |
16 2
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐵 ∈ ℝ* ) |
25 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ∈ ℝ ) |
26 |
6
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → 𝐶 ≠ 0 ) |
27 |
|
xdivrec |
⊢ ( ( 𝐵 ∈ ℝ* ∧ 𝐶 ∈ ℝ ∧ 𝐶 ≠ 0 ) → ( 𝐵 /𝑒 𝐶 ) = ( 𝐵 ·e ( 1 /𝑒 𝐶 ) ) ) |
28 |
24 25 26 27
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝐴 ) → ( 𝐵 /𝑒 𝐶 ) = ( 𝐵 ·e ( 1 /𝑒 𝐶 ) ) ) |
29 |
28
|
esumeq2dv |
⊢ ( 𝜑 → Σ* 𝑘 ∈ 𝐴 ( 𝐵 /𝑒 𝐶 ) = Σ* 𝑘 ∈ 𝐴 ( 𝐵 ·e ( 1 /𝑒 𝐶 ) ) ) |
30 |
15 23 29
|
3eqtr4d |
⊢ ( 𝜑 → ( Σ* 𝑘 ∈ 𝐴 𝐵 /𝑒 𝐶 ) = Σ* 𝑘 ∈ 𝐴 ( 𝐵 /𝑒 𝐶 ) ) |