| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofcfval3 |
|
| 2 |
|
measfrge0 |
|
| 3 |
2
|
fdmd |
|
| 4 |
3
|
adantr |
|
| 5 |
4
|
mpteq1d |
|
| 6 |
1 5
|
eqtrd |
|
| 7 |
|
measvxrge0 |
|
| 8 |
7
|
adantlr |
|
| 9 |
|
simplr |
|
| 10 |
8 9
|
xrpxdivcld |
|
| 11 |
10
|
fmpttd |
|
| 12 |
|
measbase |
|
| 13 |
|
0elsiga |
|
| 14 |
12 13
|
syl |
|
| 15 |
14
|
adantr |
|
| 16 |
|
ovex |
|
| 17 |
|
fveq2 |
|
| 18 |
17
|
oveq1d |
|
| 19 |
|
eqid |
|
| 20 |
18 19
|
fvmptg |
|
| 21 |
15 16 20
|
sylancl |
|
| 22 |
|
measvnul |
|
| 23 |
22
|
oveq1d |
|
| 24 |
|
xdiv0rp |
|
| 25 |
23 24
|
sylan9eq |
|
| 26 |
21 25
|
eqtrd |
|
| 27 |
|
simpll |
|
| 28 |
|
simplr |
|
| 29 |
|
simprl |
|
| 30 |
|
simprr |
|
| 31 |
|
vex |
|
| 32 |
31
|
a1i |
|
| 33 |
|
simplll |
|
| 34 |
|
velpw |
|
| 35 |
|
ssel2 |
|
| 36 |
34 35
|
sylanb |
|
| 37 |
36
|
adantll |
|
| 38 |
|
measvxrge0 |
|
| 39 |
33 37 38
|
syl2anc |
|
| 40 |
|
simplr |
|
| 41 |
32 39 40
|
esumdivc |
|
| 42 |
41
|
3ad2antr1 |
|
| 43 |
12
|
ad2antrr |
|
| 44 |
|
simpr1 |
|
| 45 |
|
simpr2 |
|
| 46 |
|
sigaclcu |
|
| 47 |
43 44 45 46
|
syl3anc |
|
| 48 |
|
fveq2 |
|
| 49 |
48
|
oveq1d |
|
| 50 |
|
ovex |
|
| 51 |
49 19 50
|
fvmpt3i |
|
| 52 |
47 51
|
syl |
|
| 53 |
|
simpll |
|
| 54 |
|
simpr3 |
|
| 55 |
|
measvun |
|
| 56 |
53 44 45 54 55
|
syl112anc |
|
| 57 |
56
|
oveq1d |
|
| 58 |
52 57
|
eqtrd |
|
| 59 |
|
fveq2 |
|
| 60 |
59
|
oveq1d |
|
| 61 |
60 19 50
|
fvmpt3i |
|
| 62 |
36 61
|
syl |
|
| 63 |
62
|
esumeq2dv |
|
| 64 |
44 63
|
syl |
|
| 65 |
42 58 64
|
3eqtr4d |
|
| 66 |
27 28 29 30 65
|
syl13anc |
|
| 67 |
66
|
ex |
|
| 68 |
67
|
ralrimiva |
|
| 69 |
|
ismeas |
|
| 70 |
12 69
|
syl |
|
| 71 |
70
|
biimprd |
|
| 72 |
71
|
adantr |
|
| 73 |
11 26 68 72
|
mp3and |
|
| 74 |
6 73
|
eqeltrd |
|