Metamath Proof Explorer


Theorem measdivcst

Description: Division of a measure by a positive constant is a measure. (Contributed by Thierry Arnoux, 25-Dec-2016) (Revised by Thierry Arnoux, 30-Jan-2017)

Ref Expression
Assertion measdivcst M measures S A + M fc ÷ 𝑒 A measures S

Proof

Step Hyp Ref Expression
1 ofcfval3 M measures S A + M fc ÷ 𝑒 A = x dom M M x ÷ 𝑒 A
2 measfrge0 M measures S M : S 0 +∞
3 2 fdmd M measures S dom M = S
4 3 adantr M measures S A + dom M = S
5 4 mpteq1d M measures S A + x dom M M x ÷ 𝑒 A = x S M x ÷ 𝑒 A
6 1 5 eqtrd M measures S A + M fc ÷ 𝑒 A = x S M x ÷ 𝑒 A
7 measvxrge0 M measures S x S M x 0 +∞
8 7 adantlr M measures S A + x S M x 0 +∞
9 simplr M measures S A + x S A +
10 8 9 xrpxdivcld M measures S A + x S M x ÷ 𝑒 A 0 +∞
11 10 fmpttd M measures S A + x S M x ÷ 𝑒 A : S 0 +∞
12 measbase M measures S S ran sigAlgebra
13 0elsiga S ran sigAlgebra S
14 12 13 syl M measures S S
15 14 adantr M measures S A + S
16 ovex M ÷ 𝑒 A V
17 fveq2 x = M x = M
18 17 oveq1d x = M x ÷ 𝑒 A = M ÷ 𝑒 A
19 eqid x S M x ÷ 𝑒 A = x S M x ÷ 𝑒 A
20 18 19 fvmptg S M ÷ 𝑒 A V x S M x ÷ 𝑒 A = M ÷ 𝑒 A
21 15 16 20 sylancl M measures S A + x S M x ÷ 𝑒 A = M ÷ 𝑒 A
22 measvnul M measures S M = 0
23 22 oveq1d M measures S M ÷ 𝑒 A = 0 ÷ 𝑒 A
24 xdiv0rp A + 0 ÷ 𝑒 A = 0
25 23 24 sylan9eq M measures S A + M ÷ 𝑒 A = 0
26 21 25 eqtrd M measures S A + x S M x ÷ 𝑒 A = 0
27 simpll M measures S A + y 𝒫 S y ω Disj z y z M measures S A +
28 simplr M measures S A + y 𝒫 S y ω Disj z y z y 𝒫 S
29 simprl M measures S A + y 𝒫 S y ω Disj z y z y ω
30 simprr M measures S A + y 𝒫 S y ω Disj z y z Disj z y z
31 vex y V
32 31 a1i M measures S A + y 𝒫 S y V
33 simplll M measures S A + y 𝒫 S z y M measures S
34 velpw y 𝒫 S y S
35 ssel2 y S z y z S
36 34 35 sylanb y 𝒫 S z y z S
37 36 adantll M measures S A + y 𝒫 S z y z S
38 measvxrge0 M measures S z S M z 0 +∞
39 33 37 38 syl2anc M measures S A + y 𝒫 S z y M z 0 +∞
40 simplr M measures S A + y 𝒫 S A +
41 32 39 40 esumdivc M measures S A + y 𝒫 S * z y M z ÷ 𝑒 A = * z y M z ÷ 𝑒 A
42 41 3ad2antr1 M measures S A + y 𝒫 S y ω Disj z y z * z y M z ÷ 𝑒 A = * z y M z ÷ 𝑒 A
43 12 ad2antrr M measures S A + y 𝒫 S y ω Disj z y z S ran sigAlgebra
44 simpr1 M measures S A + y 𝒫 S y ω Disj z y z y 𝒫 S
45 simpr2 M measures S A + y 𝒫 S y ω Disj z y z y ω
46 sigaclcu S ran sigAlgebra y 𝒫 S y ω y S
47 43 44 45 46 syl3anc M measures S A + y 𝒫 S y ω Disj z y z y S
48 fveq2 x = y M x = M y
49 48 oveq1d x = y M x ÷ 𝑒 A = M y ÷ 𝑒 A
50 ovex M x ÷ 𝑒 A V
51 49 19 50 fvmpt3i y S x S M x ÷ 𝑒 A y = M y ÷ 𝑒 A
52 47 51 syl M measures S A + y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = M y ÷ 𝑒 A
53 simpll M measures S A + y 𝒫 S y ω Disj z y z M measures S
54 simpr3 M measures S A + y 𝒫 S y ω Disj z y z Disj z y z
55 measvun M measures S y 𝒫 S y ω Disj z y z M y = * z y M z
56 53 44 45 54 55 syl112anc M measures S A + y 𝒫 S y ω Disj z y z M y = * z y M z
57 56 oveq1d M measures S A + y 𝒫 S y ω Disj z y z M y ÷ 𝑒 A = * z y M z ÷ 𝑒 A
58 52 57 eqtrd M measures S A + y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y M z ÷ 𝑒 A
59 fveq2 x = z M x = M z
60 59 oveq1d x = z M x ÷ 𝑒 A = M z ÷ 𝑒 A
61 60 19 50 fvmpt3i z S x S M x ÷ 𝑒 A z = M z ÷ 𝑒 A
62 36 61 syl y 𝒫 S z y x S M x ÷ 𝑒 A z = M z ÷ 𝑒 A
63 62 esumeq2dv y 𝒫 S * z y x S M x ÷ 𝑒 A z = * z y M z ÷ 𝑒 A
64 44 63 syl M measures S A + y 𝒫 S y ω Disj z y z * z y x S M x ÷ 𝑒 A z = * z y M z ÷ 𝑒 A
65 42 58 64 3eqtr4d M measures S A + y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z
66 27 28 29 30 65 syl13anc M measures S A + y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z
67 66 ex M measures S A + y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z
68 67 ralrimiva M measures S A + y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z
69 ismeas S ran sigAlgebra x S M x ÷ 𝑒 A measures S x S M x ÷ 𝑒 A : S 0 +∞ x S M x ÷ 𝑒 A = 0 y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z
70 12 69 syl M measures S x S M x ÷ 𝑒 A measures S x S M x ÷ 𝑒 A : S 0 +∞ x S M x ÷ 𝑒 A = 0 y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z
71 70 biimprd M measures S x S M x ÷ 𝑒 A : S 0 +∞ x S M x ÷ 𝑒 A = 0 y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z x S M x ÷ 𝑒 A measures S
72 71 adantr M measures S A + x S M x ÷ 𝑒 A : S 0 +∞ x S M x ÷ 𝑒 A = 0 y 𝒫 S y ω Disj z y z x S M x ÷ 𝑒 A y = * z y x S M x ÷ 𝑒 A z x S M x ÷ 𝑒 A measures S
73 11 26 68 72 mp3and M measures S A + x S M x ÷ 𝑒 A measures S
74 6 73 eqeltrd M measures S A + M fc ÷ 𝑒 A measures S