Step |
Hyp |
Ref |
Expression |
1 |
|
ofcfval3 |
|
2 |
|
measfrge0 |
|
3 |
2
|
fdmd |
|
4 |
3
|
adantr |
|
5 |
4
|
mpteq1d |
|
6 |
1 5
|
eqtrd |
|
7 |
|
measvxrge0 |
|
8 |
7
|
adantlr |
|
9 |
|
simplr |
|
10 |
8 9
|
xrpxdivcld |
|
11 |
10
|
fmpttd |
|
12 |
|
measbase |
|
13 |
|
0elsiga |
|
14 |
12 13
|
syl |
|
15 |
14
|
adantr |
|
16 |
|
ovex |
|
17 |
|
fveq2 |
|
18 |
17
|
oveq1d |
|
19 |
|
eqid |
|
20 |
18 19
|
fvmptg |
|
21 |
15 16 20
|
sylancl |
|
22 |
|
measvnul |
|
23 |
22
|
oveq1d |
|
24 |
|
xdiv0rp |
|
25 |
23 24
|
sylan9eq |
|
26 |
21 25
|
eqtrd |
|
27 |
|
simpll |
|
28 |
|
simplr |
|
29 |
|
simprl |
|
30 |
|
simprr |
|
31 |
|
vex |
|
32 |
31
|
a1i |
|
33 |
|
simplll |
|
34 |
|
velpw |
|
35 |
|
ssel2 |
|
36 |
34 35
|
sylanb |
|
37 |
36
|
adantll |
|
38 |
|
measvxrge0 |
|
39 |
33 37 38
|
syl2anc |
|
40 |
|
simplr |
|
41 |
32 39 40
|
esumdivc |
|
42 |
41
|
3ad2antr1 |
|
43 |
12
|
ad2antrr |
|
44 |
|
simpr1 |
|
45 |
|
simpr2 |
|
46 |
|
sigaclcu |
|
47 |
43 44 45 46
|
syl3anc |
|
48 |
|
fveq2 |
|
49 |
48
|
oveq1d |
|
50 |
|
ovex |
|
51 |
49 19 50
|
fvmpt3i |
|
52 |
47 51
|
syl |
|
53 |
|
simpll |
|
54 |
|
simpr3 |
|
55 |
|
measvun |
|
56 |
53 44 45 54 55
|
syl112anc |
|
57 |
56
|
oveq1d |
|
58 |
52 57
|
eqtrd |
|
59 |
|
fveq2 |
|
60 |
59
|
oveq1d |
|
61 |
60 19 50
|
fvmpt3i |
|
62 |
36 61
|
syl |
|
63 |
62
|
esumeq2dv |
|
64 |
44 63
|
syl |
|
65 |
42 58 64
|
3eqtr4d |
|
66 |
27 28 29 30 65
|
syl13anc |
|
67 |
66
|
ex |
|
68 |
67
|
ralrimiva |
|
69 |
|
ismeas |
|
70 |
12 69
|
syl |
|
71 |
70
|
biimprd |
|
72 |
71
|
adantr |
|
73 |
11 26 68 72
|
mp3and |
|
74 |
6 73
|
eqeltrd |
|