Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Abstract measure
Sigma-Algebra
0elsiga
Next ⟩
baselsiga
Metamath Proof Explorer
Ascii
Unicode
Theorem
0elsiga
Description:
A sigma-algebra contains the empty set.
(Contributed by
Thierry Arnoux
, 4-Sep-2016)
Ref
Expression
Assertion
0elsiga
⊢
S
∈
⋃
ran
⁡
sigAlgebra
→
∅
∈
S
Proof
Step
Hyp
Ref
Expression
1
isrnsiga
⊢
S
∈
⋃
ran
⁡
sigAlgebra
↔
S
∈
V
∧
∃
o
S
⊆
𝒫
o
∧
o
∈
S
∧
∀
x
∈
S
o
∖
x
∈
S
∧
∀
x
∈
𝒫
S
x
≼
ω
→
⋃
x
∈
S
2
1
simprbi
⊢
S
∈
⋃
ran
⁡
sigAlgebra
→
∃
o
S
⊆
𝒫
o
∧
o
∈
S
∧
∀
x
∈
S
o
∖
x
∈
S
∧
∀
x
∈
𝒫
S
x
≼
ω
→
⋃
x
∈
S
3
3simpa
⊢
o
∈
S
∧
∀
x
∈
S
o
∖
x
∈
S
∧
∀
x
∈
𝒫
S
x
≼
ω
→
⋃
x
∈
S
→
o
∈
S
∧
∀
x
∈
S
o
∖
x
∈
S
4
3
adantl
⊢
S
⊆
𝒫
o
∧
o
∈
S
∧
∀
x
∈
S
o
∖
x
∈
S
∧
∀
x
∈
𝒫
S
x
≼
ω
→
⋃
x
∈
S
→
o
∈
S
∧
∀
x
∈
S
o
∖
x
∈
S
5
4
eximi
⊢
∃
o
S
⊆
𝒫
o
∧
o
∈
S
∧
∀
x
∈
S
o
∖
x
∈
S
∧
∀
x
∈
𝒫
S
x
≼
ω
→
⋃
x
∈
S
→
∃
o
o
∈
S
∧
∀
x
∈
S
o
∖
x
∈
S
6
difeq2
⊢
x
=
o
→
o
∖
x
=
o
∖
o
7
difid
⊢
o
∖
o
=
∅
8
6
7
eqtrdi
⊢
x
=
o
→
o
∖
x
=
∅
9
8
eleq1d
⊢
x
=
o
→
o
∖
x
∈
S
↔
∅
∈
S
10
9
rspcva
⊢
o
∈
S
∧
∀
x
∈
S
o
∖
x
∈
S
→
∅
∈
S
11
10
exlimiv
⊢
∃
o
o
∈
S
∧
∀
x
∈
S
o
∖
x
∈
S
→
∅
∈
S
12
2
5
11
3syl
⊢
S
∈
⋃
ran
⁡
sigAlgebra
→
∅
∈
S