Metamath Proof Explorer


Theorem measdivcstALTV

Description: Alternate version of measdivcst . (Contributed by Thierry Arnoux, 25-Dec-2016) (New usage is discouraged.)

Ref Expression
Assertion measdivcstALTV ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ∈ ( measures ‘ 𝑆 ) )

Proof

Step Hyp Ref Expression
1 funmpt Fun ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) )
2 ovex ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ∈ V
3 2 rgenw 𝑥𝑆 ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ∈ V
4 dmmptg ( ∀ 𝑥𝑆 ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ∈ V → dom ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) = 𝑆 )
5 3 4 ax-mp dom ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) = 𝑆
6 df-fn ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) Fn 𝑆 ↔ ( Fun ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ∧ dom ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) = 𝑆 ) )
7 1 5 6 mpbir2an ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) Fn 𝑆
8 7 a1i ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) Fn 𝑆 )
9 vex 𝑦 ∈ V
10 eqid ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) = ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) )
11 10 elrnmpt ( 𝑦 ∈ V → ( 𝑦 ∈ ran ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ↔ ∃ 𝑥𝑆 𝑦 = ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) )
12 9 11 ax-mp ( 𝑦 ∈ ran ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ↔ ∃ 𝑥𝑆 𝑦 = ( ( 𝑀𝑥 ) /𝑒 𝐴 ) )
13 measfrge0 ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) )
14 ffvelrn ( ( 𝑀 : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ 𝑥𝑆 ) → ( 𝑀𝑥 ) ∈ ( 0 [,] +∞ ) )
15 13 14 sylan ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑥𝑆 ) → ( 𝑀𝑥 ) ∈ ( 0 [,] +∞ ) )
16 15 adantlr ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑥𝑆 ) → ( 𝑀𝑥 ) ∈ ( 0 [,] +∞ ) )
17 simplr ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑥𝑆 ) → 𝐴 ∈ ℝ+ )
18 16 17 xrpxdivcld ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑥𝑆 ) → ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ∈ ( 0 [,] +∞ ) )
19 eleq1a ( ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ∈ ( 0 [,] +∞ ) → ( 𝑦 = ( ( 𝑀𝑥 ) /𝑒 𝐴 ) → 𝑦 ∈ ( 0 [,] +∞ ) ) )
20 18 19 syl ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑥𝑆 ) → ( 𝑦 = ( ( 𝑀𝑥 ) /𝑒 𝐴 ) → 𝑦 ∈ ( 0 [,] +∞ ) ) )
21 20 rexlimdva ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( ∃ 𝑥𝑆 𝑦 = ( ( 𝑀𝑥 ) /𝑒 𝐴 ) → 𝑦 ∈ ( 0 [,] +∞ ) ) )
22 12 21 syl5bi ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( 𝑦 ∈ ran ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) → 𝑦 ∈ ( 0 [,] +∞ ) ) )
23 22 ssrdv ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ran ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ⊆ ( 0 [,] +∞ ) )
24 df-f ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) : 𝑆 ⟶ ( 0 [,] +∞ ) ↔ ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) Fn 𝑆 ∧ ran ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ⊆ ( 0 [,] +∞ ) ) )
25 8 23 24 sylanbrc ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) : 𝑆 ⟶ ( 0 [,] +∞ ) )
26 measbase ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ran sigAlgebra )
27 0elsiga ( 𝑆 ran sigAlgebra → ∅ ∈ 𝑆 )
28 26 27 syl ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ∅ ∈ 𝑆 )
29 28 adantr ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ∅ ∈ 𝑆 )
30 ovex ( ( 𝑀 ‘ ∅ ) /𝑒 𝐴 ) ∈ V
31 29 30 jctir ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( ∅ ∈ 𝑆 ∧ ( ( 𝑀 ‘ ∅ ) /𝑒 𝐴 ) ∈ V ) )
32 fveq2 ( 𝑥 = ∅ → ( 𝑀𝑥 ) = ( 𝑀 ‘ ∅ ) )
33 32 oveq1d ( 𝑥 = ∅ → ( ( 𝑀𝑥 ) /𝑒 𝐴 ) = ( ( 𝑀 ‘ ∅ ) /𝑒 𝐴 ) )
34 33 10 fvmptg ( ( ∅ ∈ 𝑆 ∧ ( ( 𝑀 ‘ ∅ ) /𝑒 𝐴 ) ∈ V ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ ∅ ) = ( ( 𝑀 ‘ ∅ ) /𝑒 𝐴 ) )
35 31 34 syl ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ ∅ ) = ( ( 𝑀 ‘ ∅ ) /𝑒 𝐴 ) )
36 measvnul ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( 𝑀 ‘ ∅ ) = 0 )
37 36 oveq1d ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( ( 𝑀 ‘ ∅ ) /𝑒 𝐴 ) = ( 0 /𝑒 𝐴 ) )
38 xdiv0rp ( 𝐴 ∈ ℝ+ → ( 0 /𝑒 𝐴 ) = 0 )
39 37 38 sylan9eq ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( ( 𝑀 ‘ ∅ ) /𝑒 𝐴 ) = 0 )
40 35 39 eqtrd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ ∅ ) = 0 )
41 simpll ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) )
42 simplr ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → 𝑦 ∈ 𝒫 𝑆 )
43 simprl ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → 𝑦 ≼ ω )
44 simprr ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → Disj 𝑧𝑦 𝑧 )
45 42 43 44 3jca ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) )
46 9 a1i ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) → 𝑦 ∈ V )
47 simplll ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ 𝑧𝑦 ) → 𝑀 ∈ ( measures ‘ 𝑆 ) )
48 simplr ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ 𝑧𝑦 ) → 𝑦 ∈ 𝒫 𝑆 )
49 simpr ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ 𝑧𝑦 ) → 𝑧𝑦 )
50 elpwg ( 𝑦 ∈ V → ( 𝑦 ∈ 𝒫 𝑆𝑦𝑆 ) )
51 9 50 ax-mp ( 𝑦 ∈ 𝒫 𝑆𝑦𝑆 )
52 ssel2 ( ( 𝑦𝑆𝑧𝑦 ) → 𝑧𝑆 )
53 51 52 sylanb ( ( 𝑦 ∈ 𝒫 𝑆𝑧𝑦 ) → 𝑧𝑆 )
54 48 49 53 syl2anc ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ 𝑧𝑦 ) → 𝑧𝑆 )
55 measvxrge0 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑧𝑆 ) → ( 𝑀𝑧 ) ∈ ( 0 [,] +∞ ) )
56 47 54 55 syl2anc ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ 𝑧𝑦 ) → ( 𝑀𝑧 ) ∈ ( 0 [,] +∞ ) )
57 simplr ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) → 𝐴 ∈ ℝ+ )
58 46 56 57 esumdivc ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) → ( Σ* 𝑧𝑦 ( 𝑀𝑧 ) /𝑒 𝐴 ) = Σ* 𝑧𝑦 ( ( 𝑀𝑧 ) /𝑒 𝐴 ) )
59 58 3ad2antr1 ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( Σ* 𝑧𝑦 ( 𝑀𝑧 ) /𝑒 𝐴 ) = Σ* 𝑧𝑦 ( ( 𝑀𝑧 ) /𝑒 𝐴 ) )
60 26 ad2antrr ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → 𝑆 ran sigAlgebra )
61 simpr1 ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → 𝑦 ∈ 𝒫 𝑆 )
62 simpr2 ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → 𝑦 ≼ ω )
63 sigaclcu ( ( 𝑆 ran sigAlgebra ∧ 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ) → 𝑦𝑆 )
64 60 61 62 63 syl3anc ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → 𝑦𝑆 )
65 fveq2 ( 𝑥 = 𝑦 → ( 𝑀𝑥 ) = ( 𝑀 𝑦 ) )
66 65 oveq1d ( 𝑥 = 𝑦 → ( ( 𝑀𝑥 ) /𝑒 𝐴 ) = ( ( 𝑀 𝑦 ) /𝑒 𝐴 ) )
67 66 10 2 fvmpt3i ( 𝑦𝑆 → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = ( ( 𝑀 𝑦 ) /𝑒 𝐴 ) )
68 64 67 syl ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = ( ( 𝑀 𝑦 ) /𝑒 𝐴 ) )
69 simpll ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → 𝑀 ∈ ( measures ‘ 𝑆 ) )
70 69 61 jca ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑦 ∈ 𝒫 𝑆 ) )
71 simpr3 ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → Disj 𝑧𝑦 𝑧 )
72 62 71 jca ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) )
73 measvun ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑦 ∈ 𝒫 𝑆 ∧ ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( 𝑀 𝑦 ) = Σ* 𝑧𝑦 ( 𝑀𝑧 ) )
74 73 3expia ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑦 ∈ 𝒫 𝑆 ) → ( ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) → ( 𝑀 𝑦 ) = Σ* 𝑧𝑦 ( 𝑀𝑧 ) ) )
75 74 ralrimiva ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ∀ 𝑦 ∈ 𝒫 𝑆 ( ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) → ( 𝑀 𝑦 ) = Σ* 𝑧𝑦 ( 𝑀𝑧 ) ) )
76 75 r19.21bi ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑦 ∈ 𝒫 𝑆 ) → ( ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) → ( 𝑀 𝑦 ) = Σ* 𝑧𝑦 ( 𝑀𝑧 ) ) )
77 70 72 76 sylc ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( 𝑀 𝑦 ) = Σ* 𝑧𝑦 ( 𝑀𝑧 ) )
78 77 oveq1d ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( ( 𝑀 𝑦 ) /𝑒 𝐴 ) = ( Σ* 𝑧𝑦 ( 𝑀𝑧 ) /𝑒 𝐴 ) )
79 68 78 eqtrd ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = ( Σ* 𝑧𝑦 ( 𝑀𝑧 ) /𝑒 𝐴 ) )
80 fveq2 ( 𝑥 = 𝑧 → ( 𝑀𝑥 ) = ( 𝑀𝑧 ) )
81 80 oveq1d ( 𝑥 = 𝑧 → ( ( 𝑀𝑥 ) /𝑒 𝐴 ) = ( ( 𝑀𝑧 ) /𝑒 𝐴 ) )
82 81 10 2 fvmpt3i ( 𝑧𝑆 → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) = ( ( 𝑀𝑧 ) /𝑒 𝐴 ) )
83 53 82 syl ( ( 𝑦 ∈ 𝒫 𝑆𝑧𝑦 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) = ( ( 𝑀𝑧 ) /𝑒 𝐴 ) )
84 83 esumeq2dv ( 𝑦 ∈ 𝒫 𝑆 → Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) = Σ* 𝑧𝑦 ( ( 𝑀𝑧 ) /𝑒 𝐴 ) )
85 61 84 syl ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) = Σ* 𝑧𝑦 ( ( 𝑀𝑧 ) /𝑒 𝐴 ) )
86 59 79 85 3eqtr4d ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ ( 𝑦 ∈ 𝒫 𝑆𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) )
87 41 45 86 syl2anc ( ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) ∧ ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) )
88 87 ex ( ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) ∧ 𝑦 ∈ 𝒫 𝑆 ) → ( ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) ) )
89 88 ralrimiva ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ∀ 𝑦 ∈ 𝒫 𝑆 ( ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) ) )
90 25 40 89 3jca ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ ∅ ) = 0 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) ) ) )
91 ismeas ( 𝑆 ran sigAlgebra → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ∈ ( measures ‘ 𝑆 ) ↔ ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ ∅ ) = 0 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) ) ) ) )
92 26 91 syl ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ∈ ( measures ‘ 𝑆 ) ↔ ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ ∅ ) = 0 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) ) ) ) )
93 92 biimprd ( 𝑀 ∈ ( measures ‘ 𝑆 ) → ( ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ ∅ ) = 0 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) ) ) → ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ∈ ( measures ‘ 𝑆 ) ) )
94 93 adantr ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) : 𝑆 ⟶ ( 0 [,] +∞ ) ∧ ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ ∅ ) = 0 ∧ ∀ 𝑦 ∈ 𝒫 𝑆 ( ( 𝑦 ≼ ω ∧ Disj 𝑧𝑦 𝑧 ) → ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑦 ) = Σ* 𝑧𝑦 ( ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ‘ 𝑧 ) ) ) → ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ∈ ( measures ‘ 𝑆 ) ) )
95 90 94 mpd ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ ℝ+ ) → ( 𝑥𝑆 ↦ ( ( 𝑀𝑥 ) /𝑒 𝐴 ) ) ∈ ( measures ‘ 𝑆 ) )