| Step |
Hyp |
Ref |
Expression |
| 1 |
|
funmpt |
|- Fun ( x e. S |-> ( ( M ` x ) /e A ) ) |
| 2 |
|
ovex |
|- ( ( M ` x ) /e A ) e. _V |
| 3 |
2
|
rgenw |
|- A. x e. S ( ( M ` x ) /e A ) e. _V |
| 4 |
|
dmmptg |
|- ( A. x e. S ( ( M ` x ) /e A ) e. _V -> dom ( x e. S |-> ( ( M ` x ) /e A ) ) = S ) |
| 5 |
3 4
|
ax-mp |
|- dom ( x e. S |-> ( ( M ` x ) /e A ) ) = S |
| 6 |
|
df-fn |
|- ( ( x e. S |-> ( ( M ` x ) /e A ) ) Fn S <-> ( Fun ( x e. S |-> ( ( M ` x ) /e A ) ) /\ dom ( x e. S |-> ( ( M ` x ) /e A ) ) = S ) ) |
| 7 |
1 5 6
|
mpbir2an |
|- ( x e. S |-> ( ( M ` x ) /e A ) ) Fn S |
| 8 |
7
|
a1i |
|- ( ( M e. ( measures ` S ) /\ A e. RR+ ) -> ( x e. S |-> ( ( M ` x ) /e A ) ) Fn S ) |
| 9 |
|
vex |
|- y e. _V |
| 10 |
|
eqid |
|- ( x e. S |-> ( ( M ` x ) /e A ) ) = ( x e. S |-> ( ( M ` x ) /e A ) ) |
| 11 |
10
|
elrnmpt |
|- ( y e. _V -> ( y e. ran ( x e. S |-> ( ( M ` x ) /e A ) ) <-> E. x e. S y = ( ( M ` x ) /e A ) ) ) |
| 12 |
9 11
|
ax-mp |
|- ( y e. ran ( x e. S |-> ( ( M ` x ) /e A ) ) <-> E. x e. S y = ( ( M ` x ) /e A ) ) |
| 13 |
|
measfrge0 |
|- ( M e. ( measures ` S ) -> M : S --> ( 0 [,] +oo ) ) |
| 14 |
|
ffvelcdm |
|- ( ( M : S --> ( 0 [,] +oo ) /\ x e. S ) -> ( M ` x ) e. ( 0 [,] +oo ) ) |
| 15 |
13 14
|
sylan |
|- ( ( M e. ( measures ` S ) /\ x e. S ) -> ( M ` x ) e. ( 0 [,] +oo ) ) |
| 16 |
15
|
adantlr |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ x e. S ) -> ( M ` x ) e. ( 0 [,] +oo ) ) |
| 17 |
|
simplr |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ x e. S ) -> A e. RR+ ) |
| 18 |
16 17
|
xrpxdivcld |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ x e. S ) -> ( ( M ` x ) /e A ) e. ( 0 [,] +oo ) ) |
| 19 |
|
eleq1a |
|- ( ( ( M ` x ) /e A ) e. ( 0 [,] +oo ) -> ( y = ( ( M ` x ) /e A ) -> y e. ( 0 [,] +oo ) ) ) |
| 20 |
18 19
|
syl |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ x e. S ) -> ( y = ( ( M ` x ) /e A ) -> y e. ( 0 [,] +oo ) ) ) |
| 21 |
20
|
rexlimdva |
|- ( ( M e. ( measures ` S ) /\ A e. RR+ ) -> ( E. x e. S y = ( ( M ` x ) /e A ) -> y e. ( 0 [,] +oo ) ) ) |
| 22 |
12 21
|
biimtrid |
|- ( ( M e. ( measures ` S ) /\ A e. RR+ ) -> ( y e. ran ( x e. S |-> ( ( M ` x ) /e A ) ) -> y e. ( 0 [,] +oo ) ) ) |
| 23 |
22
|
ssrdv |
|- ( ( M e. ( measures ` S ) /\ A e. RR+ ) -> ran ( x e. S |-> ( ( M ` x ) /e A ) ) C_ ( 0 [,] +oo ) ) |
| 24 |
|
df-f |
|- ( ( x e. S |-> ( ( M ` x ) /e A ) ) : S --> ( 0 [,] +oo ) <-> ( ( x e. S |-> ( ( M ` x ) /e A ) ) Fn S /\ ran ( x e. S |-> ( ( M ` x ) /e A ) ) C_ ( 0 [,] +oo ) ) ) |
| 25 |
8 23 24
|
sylanbrc |
|- ( ( M e. ( measures ` S ) /\ A e. RR+ ) -> ( x e. S |-> ( ( M ` x ) /e A ) ) : S --> ( 0 [,] +oo ) ) |
| 26 |
|
measbase |
|- ( M e. ( measures ` S ) -> S e. U. ran sigAlgebra ) |
| 27 |
|
0elsiga |
|- ( S e. U. ran sigAlgebra -> (/) e. S ) |
| 28 |
26 27
|
syl |
|- ( M e. ( measures ` S ) -> (/) e. S ) |
| 29 |
28
|
adantr |
|- ( ( M e. ( measures ` S ) /\ A e. RR+ ) -> (/) e. S ) |
| 30 |
|
ovex |
|- ( ( M ` (/) ) /e A ) e. _V |
| 31 |
29 30
|
jctir |
|- ( ( M e. ( measures ` S ) /\ A e. RR+ ) -> ( (/) e. S /\ ( ( M ` (/) ) /e A ) e. _V ) ) |
| 32 |
|
fveq2 |
|- ( x = (/) -> ( M ` x ) = ( M ` (/) ) ) |
| 33 |
32
|
oveq1d |
|- ( x = (/) -> ( ( M ` x ) /e A ) = ( ( M ` (/) ) /e A ) ) |
| 34 |
33 10
|
fvmptg |
|- ( ( (/) e. S /\ ( ( M ` (/) ) /e A ) e. _V ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` (/) ) = ( ( M ` (/) ) /e A ) ) |
| 35 |
31 34
|
syl |
|- ( ( M e. ( measures ` S ) /\ A e. RR+ ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` (/) ) = ( ( M ` (/) ) /e A ) ) |
| 36 |
|
measvnul |
|- ( M e. ( measures ` S ) -> ( M ` (/) ) = 0 ) |
| 37 |
36
|
oveq1d |
|- ( M e. ( measures ` S ) -> ( ( M ` (/) ) /e A ) = ( 0 /e A ) ) |
| 38 |
|
xdiv0rp |
|- ( A e. RR+ -> ( 0 /e A ) = 0 ) |
| 39 |
37 38
|
sylan9eq |
|- ( ( M e. ( measures ` S ) /\ A e. RR+ ) -> ( ( M ` (/) ) /e A ) = 0 ) |
| 40 |
35 39
|
eqtrd |
|- ( ( M e. ( measures ` S ) /\ A e. RR+ ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` (/) ) = 0 ) |
| 41 |
|
simpll |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ y e. ~P S ) /\ ( y ~<_ _om /\ Disj_ z e. y z ) ) -> ( M e. ( measures ` S ) /\ A e. RR+ ) ) |
| 42 |
|
simplr |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ y e. ~P S ) /\ ( y ~<_ _om /\ Disj_ z e. y z ) ) -> y e. ~P S ) |
| 43 |
|
simprl |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ y e. ~P S ) /\ ( y ~<_ _om /\ Disj_ z e. y z ) ) -> y ~<_ _om ) |
| 44 |
|
simprr |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ y e. ~P S ) /\ ( y ~<_ _om /\ Disj_ z e. y z ) ) -> Disj_ z e. y z ) |
| 45 |
42 43 44
|
3jca |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ y e. ~P S ) /\ ( y ~<_ _om /\ Disj_ z e. y z ) ) -> ( y e. ~P S /\ y ~<_ _om /\ Disj_ z e. y z ) ) |
| 46 |
9
|
a1i |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ y e. ~P S ) -> y e. _V ) |
| 47 |
|
simplll |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ y e. ~P S ) /\ z e. y ) -> M e. ( measures ` S ) ) |
| 48 |
|
simplr |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ y e. ~P S ) /\ z e. y ) -> y e. ~P S ) |
| 49 |
|
simpr |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ y e. ~P S ) /\ z e. y ) -> z e. y ) |
| 50 |
|
elpwg |
|- ( y e. _V -> ( y e. ~P S <-> y C_ S ) ) |
| 51 |
9 50
|
ax-mp |
|- ( y e. ~P S <-> y C_ S ) |
| 52 |
|
ssel2 |
|- ( ( y C_ S /\ z e. y ) -> z e. S ) |
| 53 |
51 52
|
sylanb |
|- ( ( y e. ~P S /\ z e. y ) -> z e. S ) |
| 54 |
48 49 53
|
syl2anc |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ y e. ~P S ) /\ z e. y ) -> z e. S ) |
| 55 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ z e. S ) -> ( M ` z ) e. ( 0 [,] +oo ) ) |
| 56 |
47 54 55
|
syl2anc |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ y e. ~P S ) /\ z e. y ) -> ( M ` z ) e. ( 0 [,] +oo ) ) |
| 57 |
|
simplr |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ y e. ~P S ) -> A e. RR+ ) |
| 58 |
46 56 57
|
esumdivc |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ y e. ~P S ) -> ( sum* z e. y ( M ` z ) /e A ) = sum* z e. y ( ( M ` z ) /e A ) ) |
| 59 |
58
|
3ad2antr1 |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ ( y e. ~P S /\ y ~<_ _om /\ Disj_ z e. y z ) ) -> ( sum* z e. y ( M ` z ) /e A ) = sum* z e. y ( ( M ` z ) /e A ) ) |
| 60 |
26
|
ad2antrr |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ ( y e. ~P S /\ y ~<_ _om /\ Disj_ z e. y z ) ) -> S e. U. ran sigAlgebra ) |
| 61 |
|
simpr1 |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ ( y e. ~P S /\ y ~<_ _om /\ Disj_ z e. y z ) ) -> y e. ~P S ) |
| 62 |
|
simpr2 |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ ( y e. ~P S /\ y ~<_ _om /\ Disj_ z e. y z ) ) -> y ~<_ _om ) |
| 63 |
|
sigaclcu |
|- ( ( S e. U. ran sigAlgebra /\ y e. ~P S /\ y ~<_ _om ) -> U. y e. S ) |
| 64 |
60 61 62 63
|
syl3anc |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ ( y e. ~P S /\ y ~<_ _om /\ Disj_ z e. y z ) ) -> U. y e. S ) |
| 65 |
|
fveq2 |
|- ( x = U. y -> ( M ` x ) = ( M ` U. y ) ) |
| 66 |
65
|
oveq1d |
|- ( x = U. y -> ( ( M ` x ) /e A ) = ( ( M ` U. y ) /e A ) ) |
| 67 |
66 10 2
|
fvmpt3i |
|- ( U. y e. S -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` U. y ) = ( ( M ` U. y ) /e A ) ) |
| 68 |
64 67
|
syl |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ ( y e. ~P S /\ y ~<_ _om /\ Disj_ z e. y z ) ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` U. y ) = ( ( M ` U. y ) /e A ) ) |
| 69 |
|
simpll |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ ( y e. ~P S /\ y ~<_ _om /\ Disj_ z e. y z ) ) -> M e. ( measures ` S ) ) |
| 70 |
69 61
|
jca |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ ( y e. ~P S /\ y ~<_ _om /\ Disj_ z e. y z ) ) -> ( M e. ( measures ` S ) /\ y e. ~P S ) ) |
| 71 |
|
simpr3 |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ ( y e. ~P S /\ y ~<_ _om /\ Disj_ z e. y z ) ) -> Disj_ z e. y z ) |
| 72 |
62 71
|
jca |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ ( y e. ~P S /\ y ~<_ _om /\ Disj_ z e. y z ) ) -> ( y ~<_ _om /\ Disj_ z e. y z ) ) |
| 73 |
|
measvun |
|- ( ( M e. ( measures ` S ) /\ y e. ~P S /\ ( y ~<_ _om /\ Disj_ z e. y z ) ) -> ( M ` U. y ) = sum* z e. y ( M ` z ) ) |
| 74 |
73
|
3expia |
|- ( ( M e. ( measures ` S ) /\ y e. ~P S ) -> ( ( y ~<_ _om /\ Disj_ z e. y z ) -> ( M ` U. y ) = sum* z e. y ( M ` z ) ) ) |
| 75 |
74
|
ralrimiva |
|- ( M e. ( measures ` S ) -> A. y e. ~P S ( ( y ~<_ _om /\ Disj_ z e. y z ) -> ( M ` U. y ) = sum* z e. y ( M ` z ) ) ) |
| 76 |
75
|
r19.21bi |
|- ( ( M e. ( measures ` S ) /\ y e. ~P S ) -> ( ( y ~<_ _om /\ Disj_ z e. y z ) -> ( M ` U. y ) = sum* z e. y ( M ` z ) ) ) |
| 77 |
70 72 76
|
sylc |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ ( y e. ~P S /\ y ~<_ _om /\ Disj_ z e. y z ) ) -> ( M ` U. y ) = sum* z e. y ( M ` z ) ) |
| 78 |
77
|
oveq1d |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ ( y e. ~P S /\ y ~<_ _om /\ Disj_ z e. y z ) ) -> ( ( M ` U. y ) /e A ) = ( sum* z e. y ( M ` z ) /e A ) ) |
| 79 |
68 78
|
eqtrd |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ ( y e. ~P S /\ y ~<_ _om /\ Disj_ z e. y z ) ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` U. y ) = ( sum* z e. y ( M ` z ) /e A ) ) |
| 80 |
|
fveq2 |
|- ( x = z -> ( M ` x ) = ( M ` z ) ) |
| 81 |
80
|
oveq1d |
|- ( x = z -> ( ( M ` x ) /e A ) = ( ( M ` z ) /e A ) ) |
| 82 |
81 10 2
|
fvmpt3i |
|- ( z e. S -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` z ) = ( ( M ` z ) /e A ) ) |
| 83 |
53 82
|
syl |
|- ( ( y e. ~P S /\ z e. y ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` z ) = ( ( M ` z ) /e A ) ) |
| 84 |
83
|
esumeq2dv |
|- ( y e. ~P S -> sum* z e. y ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` z ) = sum* z e. y ( ( M ` z ) /e A ) ) |
| 85 |
61 84
|
syl |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ ( y e. ~P S /\ y ~<_ _om /\ Disj_ z e. y z ) ) -> sum* z e. y ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` z ) = sum* z e. y ( ( M ` z ) /e A ) ) |
| 86 |
59 79 85
|
3eqtr4d |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ ( y e. ~P S /\ y ~<_ _om /\ Disj_ z e. y z ) ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` U. y ) = sum* z e. y ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` z ) ) |
| 87 |
41 45 86
|
syl2anc |
|- ( ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ y e. ~P S ) /\ ( y ~<_ _om /\ Disj_ z e. y z ) ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` U. y ) = sum* z e. y ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` z ) ) |
| 88 |
87
|
ex |
|- ( ( ( M e. ( measures ` S ) /\ A e. RR+ ) /\ y e. ~P S ) -> ( ( y ~<_ _om /\ Disj_ z e. y z ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` U. y ) = sum* z e. y ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` z ) ) ) |
| 89 |
88
|
ralrimiva |
|- ( ( M e. ( measures ` S ) /\ A e. RR+ ) -> A. y e. ~P S ( ( y ~<_ _om /\ Disj_ z e. y z ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` U. y ) = sum* z e. y ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` z ) ) ) |
| 90 |
25 40 89
|
3jca |
|- ( ( M e. ( measures ` S ) /\ A e. RR+ ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) : S --> ( 0 [,] +oo ) /\ ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` (/) ) = 0 /\ A. y e. ~P S ( ( y ~<_ _om /\ Disj_ z e. y z ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` U. y ) = sum* z e. y ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` z ) ) ) ) |
| 91 |
|
ismeas |
|- ( S e. U. ran sigAlgebra -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) e. ( measures ` S ) <-> ( ( x e. S |-> ( ( M ` x ) /e A ) ) : S --> ( 0 [,] +oo ) /\ ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` (/) ) = 0 /\ A. y e. ~P S ( ( y ~<_ _om /\ Disj_ z e. y z ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` U. y ) = sum* z e. y ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` z ) ) ) ) ) |
| 92 |
26 91
|
syl |
|- ( M e. ( measures ` S ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) e. ( measures ` S ) <-> ( ( x e. S |-> ( ( M ` x ) /e A ) ) : S --> ( 0 [,] +oo ) /\ ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` (/) ) = 0 /\ A. y e. ~P S ( ( y ~<_ _om /\ Disj_ z e. y z ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` U. y ) = sum* z e. y ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` z ) ) ) ) ) |
| 93 |
92
|
biimprd |
|- ( M e. ( measures ` S ) -> ( ( ( x e. S |-> ( ( M ` x ) /e A ) ) : S --> ( 0 [,] +oo ) /\ ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` (/) ) = 0 /\ A. y e. ~P S ( ( y ~<_ _om /\ Disj_ z e. y z ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` U. y ) = sum* z e. y ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` z ) ) ) -> ( x e. S |-> ( ( M ` x ) /e A ) ) e. ( measures ` S ) ) ) |
| 94 |
93
|
adantr |
|- ( ( M e. ( measures ` S ) /\ A e. RR+ ) -> ( ( ( x e. S |-> ( ( M ` x ) /e A ) ) : S --> ( 0 [,] +oo ) /\ ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` (/) ) = 0 /\ A. y e. ~P S ( ( y ~<_ _om /\ Disj_ z e. y z ) -> ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` U. y ) = sum* z e. y ( ( x e. S |-> ( ( M ` x ) /e A ) ) ` z ) ) ) -> ( x e. S |-> ( ( M ` x ) /e A ) ) e. ( measures ` S ) ) ) |
| 95 |
90 94
|
mpd |
|- ( ( M e. ( measures ` S ) /\ A e. RR+ ) -> ( x e. S |-> ( ( M ` x ) /e A ) ) e. ( measures ` S ) ) |