Metamath Proof Explorer


Theorem measinb2

Description: Building a measure restricted to the intersection with a given set. (Contributed by Thierry Arnoux, 25-Dec-2016)

Ref Expression
Assertion measinb2 MmeasuresSASxS𝒫AMxAmeasuresS𝒫A

Proof

Step Hyp Ref Expression
1 resmpt3 xSMxAS𝒫A=xSS𝒫AMxA
2 inin SS𝒫A=S𝒫A
3 eqid MxA=MxA
4 2 3 mpteq12i xSS𝒫AMxA=xS𝒫AMxA
5 1 4 eqtri xSMxAS𝒫A=xS𝒫AMxA
6 measinb MmeasuresSASxSMxAmeasuresS
7 measbase MmeasuresSSransigAlgebra
8 sigainb SransigAlgebraASS𝒫AsigAlgebraA
9 elrnsiga S𝒫AsigAlgebraAS𝒫AransigAlgebra
10 8 9 syl SransigAlgebraASS𝒫AransigAlgebra
11 7 10 sylan MmeasuresSASS𝒫AransigAlgebra
12 inss1 S𝒫AS
13 12 a1i MmeasuresSASS𝒫AS
14 measres xSMxAmeasuresSS𝒫AransigAlgebraS𝒫ASxSMxAS𝒫AmeasuresS𝒫A
15 6 11 13 14 syl3anc MmeasuresSASxSMxAS𝒫AmeasuresS𝒫A
16 5 15 eqeltrrid MmeasuresSASxS𝒫AMxAmeasuresS𝒫A