| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iuninc.1 |
|- ( ph -> F Fn NN ) |
| 2 |
|
iuninc.2 |
|- ( ( ph /\ n e. NN ) -> ( F ` n ) C_ ( F ` ( n + 1 ) ) ) |
| 3 |
|
oveq2 |
|- ( j = 1 -> ( 1 ... j ) = ( 1 ... 1 ) ) |
| 4 |
3
|
iuneq1d |
|- ( j = 1 -> U_ n e. ( 1 ... j ) ( F ` n ) = U_ n e. ( 1 ... 1 ) ( F ` n ) ) |
| 5 |
|
fveq2 |
|- ( j = 1 -> ( F ` j ) = ( F ` 1 ) ) |
| 6 |
4 5
|
eqeq12d |
|- ( j = 1 -> ( U_ n e. ( 1 ... j ) ( F ` n ) = ( F ` j ) <-> U_ n e. ( 1 ... 1 ) ( F ` n ) = ( F ` 1 ) ) ) |
| 7 |
6
|
imbi2d |
|- ( j = 1 -> ( ( ph -> U_ n e. ( 1 ... j ) ( F ` n ) = ( F ` j ) ) <-> ( ph -> U_ n e. ( 1 ... 1 ) ( F ` n ) = ( F ` 1 ) ) ) ) |
| 8 |
|
oveq2 |
|- ( j = k -> ( 1 ... j ) = ( 1 ... k ) ) |
| 9 |
8
|
iuneq1d |
|- ( j = k -> U_ n e. ( 1 ... j ) ( F ` n ) = U_ n e. ( 1 ... k ) ( F ` n ) ) |
| 10 |
|
fveq2 |
|- ( j = k -> ( F ` j ) = ( F ` k ) ) |
| 11 |
9 10
|
eqeq12d |
|- ( j = k -> ( U_ n e. ( 1 ... j ) ( F ` n ) = ( F ` j ) <-> U_ n e. ( 1 ... k ) ( F ` n ) = ( F ` k ) ) ) |
| 12 |
11
|
imbi2d |
|- ( j = k -> ( ( ph -> U_ n e. ( 1 ... j ) ( F ` n ) = ( F ` j ) ) <-> ( ph -> U_ n e. ( 1 ... k ) ( F ` n ) = ( F ` k ) ) ) ) |
| 13 |
|
oveq2 |
|- ( j = ( k + 1 ) -> ( 1 ... j ) = ( 1 ... ( k + 1 ) ) ) |
| 14 |
13
|
iuneq1d |
|- ( j = ( k + 1 ) -> U_ n e. ( 1 ... j ) ( F ` n ) = U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) ) |
| 15 |
|
fveq2 |
|- ( j = ( k + 1 ) -> ( F ` j ) = ( F ` ( k + 1 ) ) ) |
| 16 |
14 15
|
eqeq12d |
|- ( j = ( k + 1 ) -> ( U_ n e. ( 1 ... j ) ( F ` n ) = ( F ` j ) <-> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = ( F ` ( k + 1 ) ) ) ) |
| 17 |
16
|
imbi2d |
|- ( j = ( k + 1 ) -> ( ( ph -> U_ n e. ( 1 ... j ) ( F ` n ) = ( F ` j ) ) <-> ( ph -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = ( F ` ( k + 1 ) ) ) ) ) |
| 18 |
|
oveq2 |
|- ( j = i -> ( 1 ... j ) = ( 1 ... i ) ) |
| 19 |
18
|
iuneq1d |
|- ( j = i -> U_ n e. ( 1 ... j ) ( F ` n ) = U_ n e. ( 1 ... i ) ( F ` n ) ) |
| 20 |
|
fveq2 |
|- ( j = i -> ( F ` j ) = ( F ` i ) ) |
| 21 |
19 20
|
eqeq12d |
|- ( j = i -> ( U_ n e. ( 1 ... j ) ( F ` n ) = ( F ` j ) <-> U_ n e. ( 1 ... i ) ( F ` n ) = ( F ` i ) ) ) |
| 22 |
21
|
imbi2d |
|- ( j = i -> ( ( ph -> U_ n e. ( 1 ... j ) ( F ` n ) = ( F ` j ) ) <-> ( ph -> U_ n e. ( 1 ... i ) ( F ` n ) = ( F ` i ) ) ) ) |
| 23 |
|
1z |
|- 1 e. ZZ |
| 24 |
|
fzsn |
|- ( 1 e. ZZ -> ( 1 ... 1 ) = { 1 } ) |
| 25 |
|
iuneq1 |
|- ( ( 1 ... 1 ) = { 1 } -> U_ n e. ( 1 ... 1 ) ( F ` n ) = U_ n e. { 1 } ( F ` n ) ) |
| 26 |
23 24 25
|
mp2b |
|- U_ n e. ( 1 ... 1 ) ( F ` n ) = U_ n e. { 1 } ( F ` n ) |
| 27 |
|
1ex |
|- 1 e. _V |
| 28 |
|
fveq2 |
|- ( n = 1 -> ( F ` n ) = ( F ` 1 ) ) |
| 29 |
27 28
|
iunxsn |
|- U_ n e. { 1 } ( F ` n ) = ( F ` 1 ) |
| 30 |
26 29
|
eqtri |
|- U_ n e. ( 1 ... 1 ) ( F ` n ) = ( F ` 1 ) |
| 31 |
30
|
a1i |
|- ( ph -> U_ n e. ( 1 ... 1 ) ( F ` n ) = ( F ` 1 ) ) |
| 32 |
|
simpll |
|- ( ( ( k e. NN /\ ph ) /\ U_ n e. ( 1 ... k ) ( F ` n ) = ( F ` k ) ) -> k e. NN ) |
| 33 |
|
elnnuz |
|- ( k e. NN <-> k e. ( ZZ>= ` 1 ) ) |
| 34 |
|
fzsuc |
|- ( k e. ( ZZ>= ` 1 ) -> ( 1 ... ( k + 1 ) ) = ( ( 1 ... k ) u. { ( k + 1 ) } ) ) |
| 35 |
33 34
|
sylbi |
|- ( k e. NN -> ( 1 ... ( k + 1 ) ) = ( ( 1 ... k ) u. { ( k + 1 ) } ) ) |
| 36 |
35
|
iuneq1d |
|- ( k e. NN -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = U_ n e. ( ( 1 ... k ) u. { ( k + 1 ) } ) ( F ` n ) ) |
| 37 |
|
iunxun |
|- U_ n e. ( ( 1 ... k ) u. { ( k + 1 ) } ) ( F ` n ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. U_ n e. { ( k + 1 ) } ( F ` n ) ) |
| 38 |
|
ovex |
|- ( k + 1 ) e. _V |
| 39 |
|
fveq2 |
|- ( n = ( k + 1 ) -> ( F ` n ) = ( F ` ( k + 1 ) ) ) |
| 40 |
38 39
|
iunxsn |
|- U_ n e. { ( k + 1 ) } ( F ` n ) = ( F ` ( k + 1 ) ) |
| 41 |
40
|
uneq2i |
|- ( U_ n e. ( 1 ... k ) ( F ` n ) u. U_ n e. { ( k + 1 ) } ( F ` n ) ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) |
| 42 |
37 41
|
eqtri |
|- U_ n e. ( ( 1 ... k ) u. { ( k + 1 ) } ) ( F ` n ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) |
| 43 |
36 42
|
eqtrdi |
|- ( k e. NN -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) ) |
| 44 |
32 43
|
syl |
|- ( ( ( k e. NN /\ ph ) /\ U_ n e. ( 1 ... k ) ( F ` n ) = ( F ` k ) ) -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) ) |
| 45 |
|
simpr |
|- ( ( ( k e. NN /\ ph ) /\ U_ n e. ( 1 ... k ) ( F ` n ) = ( F ` k ) ) -> U_ n e. ( 1 ... k ) ( F ` n ) = ( F ` k ) ) |
| 46 |
45
|
uneq1d |
|- ( ( ( k e. NN /\ ph ) /\ U_ n e. ( 1 ... k ) ( F ` n ) = ( F ` k ) ) -> ( U_ n e. ( 1 ... k ) ( F ` n ) u. ( F ` ( k + 1 ) ) ) = ( ( F ` k ) u. ( F ` ( k + 1 ) ) ) ) |
| 47 |
|
simplr |
|- ( ( ( k e. NN /\ ph ) /\ U_ n e. ( 1 ... k ) ( F ` n ) = ( F ` k ) ) -> ph ) |
| 48 |
2
|
sbt |
|- [ k / n ] ( ( ph /\ n e. NN ) -> ( F ` n ) C_ ( F ` ( n + 1 ) ) ) |
| 49 |
|
sbim |
|- ( [ k / n ] ( ( ph /\ n e. NN ) -> ( F ` n ) C_ ( F ` ( n + 1 ) ) ) <-> ( [ k / n ] ( ph /\ n e. NN ) -> [ k / n ] ( F ` n ) C_ ( F ` ( n + 1 ) ) ) ) |
| 50 |
|
sban |
|- ( [ k / n ] ( ph /\ n e. NN ) <-> ( [ k / n ] ph /\ [ k / n ] n e. NN ) ) |
| 51 |
|
sbv |
|- ( [ k / n ] ph <-> ph ) |
| 52 |
|
clelsb1 |
|- ( [ k / n ] n e. NN <-> k e. NN ) |
| 53 |
51 52
|
anbi12i |
|- ( ( [ k / n ] ph /\ [ k / n ] n e. NN ) <-> ( ph /\ k e. NN ) ) |
| 54 |
50 53
|
bitr2i |
|- ( ( ph /\ k e. NN ) <-> [ k / n ] ( ph /\ n e. NN ) ) |
| 55 |
|
sbsbc |
|- ( [ k / n ] ( F ` n ) C_ ( F ` ( n + 1 ) ) <-> [. k / n ]. ( F ` n ) C_ ( F ` ( n + 1 ) ) ) |
| 56 |
|
sbcssg |
|- ( k e. _V -> ( [. k / n ]. ( F ` n ) C_ ( F ` ( n + 1 ) ) <-> [_ k / n ]_ ( F ` n ) C_ [_ k / n ]_ ( F ` ( n + 1 ) ) ) ) |
| 57 |
56
|
elv |
|- ( [. k / n ]. ( F ` n ) C_ ( F ` ( n + 1 ) ) <-> [_ k / n ]_ ( F ` n ) C_ [_ k / n ]_ ( F ` ( n + 1 ) ) ) |
| 58 |
|
csbfv |
|- [_ k / n ]_ ( F ` n ) = ( F ` k ) |
| 59 |
|
csbfv2g |
|- ( k e. _V -> [_ k / n ]_ ( F ` ( n + 1 ) ) = ( F ` [_ k / n ]_ ( n + 1 ) ) ) |
| 60 |
59
|
elv |
|- [_ k / n ]_ ( F ` ( n + 1 ) ) = ( F ` [_ k / n ]_ ( n + 1 ) ) |
| 61 |
|
csbov1g |
|- ( k e. _V -> [_ k / n ]_ ( n + 1 ) = ( [_ k / n ]_ n + 1 ) ) |
| 62 |
61
|
elv |
|- [_ k / n ]_ ( n + 1 ) = ( [_ k / n ]_ n + 1 ) |
| 63 |
62
|
fveq2i |
|- ( F ` [_ k / n ]_ ( n + 1 ) ) = ( F ` ( [_ k / n ]_ n + 1 ) ) |
| 64 |
|
vex |
|- k e. _V |
| 65 |
64
|
csbvargi |
|- [_ k / n ]_ n = k |
| 66 |
65
|
oveq1i |
|- ( [_ k / n ]_ n + 1 ) = ( k + 1 ) |
| 67 |
66
|
fveq2i |
|- ( F ` ( [_ k / n ]_ n + 1 ) ) = ( F ` ( k + 1 ) ) |
| 68 |
60 63 67
|
3eqtri |
|- [_ k / n ]_ ( F ` ( n + 1 ) ) = ( F ` ( k + 1 ) ) |
| 69 |
58 68
|
sseq12i |
|- ( [_ k / n ]_ ( F ` n ) C_ [_ k / n ]_ ( F ` ( n + 1 ) ) <-> ( F ` k ) C_ ( F ` ( k + 1 ) ) ) |
| 70 |
55 57 69
|
3bitrri |
|- ( ( F ` k ) C_ ( F ` ( k + 1 ) ) <-> [ k / n ] ( F ` n ) C_ ( F ` ( n + 1 ) ) ) |
| 71 |
54 70
|
imbi12i |
|- ( ( ( ph /\ k e. NN ) -> ( F ` k ) C_ ( F ` ( k + 1 ) ) ) <-> ( [ k / n ] ( ph /\ n e. NN ) -> [ k / n ] ( F ` n ) C_ ( F ` ( n + 1 ) ) ) ) |
| 72 |
49 71
|
bitr4i |
|- ( [ k / n ] ( ( ph /\ n e. NN ) -> ( F ` n ) C_ ( F ` ( n + 1 ) ) ) <-> ( ( ph /\ k e. NN ) -> ( F ` k ) C_ ( F ` ( k + 1 ) ) ) ) |
| 73 |
48 72
|
mpbi |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) C_ ( F ` ( k + 1 ) ) ) |
| 74 |
|
ssequn1 |
|- ( ( F ` k ) C_ ( F ` ( k + 1 ) ) <-> ( ( F ` k ) u. ( F ` ( k + 1 ) ) ) = ( F ` ( k + 1 ) ) ) |
| 75 |
73 74
|
sylib |
|- ( ( ph /\ k e. NN ) -> ( ( F ` k ) u. ( F ` ( k + 1 ) ) ) = ( F ` ( k + 1 ) ) ) |
| 76 |
47 32 75
|
syl2anc |
|- ( ( ( k e. NN /\ ph ) /\ U_ n e. ( 1 ... k ) ( F ` n ) = ( F ` k ) ) -> ( ( F ` k ) u. ( F ` ( k + 1 ) ) ) = ( F ` ( k + 1 ) ) ) |
| 77 |
44 46 76
|
3eqtrd |
|- ( ( ( k e. NN /\ ph ) /\ U_ n e. ( 1 ... k ) ( F ` n ) = ( F ` k ) ) -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = ( F ` ( k + 1 ) ) ) |
| 78 |
77
|
exp31 |
|- ( k e. NN -> ( ph -> ( U_ n e. ( 1 ... k ) ( F ` n ) = ( F ` k ) -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = ( F ` ( k + 1 ) ) ) ) ) |
| 79 |
78
|
a2d |
|- ( k e. NN -> ( ( ph -> U_ n e. ( 1 ... k ) ( F ` n ) = ( F ` k ) ) -> ( ph -> U_ n e. ( 1 ... ( k + 1 ) ) ( F ` n ) = ( F ` ( k + 1 ) ) ) ) ) |
| 80 |
7 12 17 22 31 79
|
nnind |
|- ( i e. NN -> ( ph -> U_ n e. ( 1 ... i ) ( F ` n ) = ( F ` i ) ) ) |
| 81 |
80
|
impcom |
|- ( ( ph /\ i e. NN ) -> U_ n e. ( 1 ... i ) ( F ` n ) = ( F ` i ) ) |