Metamath Proof Explorer


Theorem iuninc

Description: The union of an increasing collection of sets is its last element. (Contributed by Thierry Arnoux, 22-Jan-2017)

Ref Expression
Hypotheses iuninc.1 ( 𝜑𝐹 Fn ℕ )
iuninc.2 ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
Assertion iuninc ( ( 𝜑𝑖 ∈ ℕ ) → 𝑛 ∈ ( 1 ... 𝑖 ) ( 𝐹𝑛 ) = ( 𝐹𝑖 ) )

Proof

Step Hyp Ref Expression
1 iuninc.1 ( 𝜑𝐹 Fn ℕ )
2 iuninc.2 ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
3 oveq2 ( 𝑗 = 1 → ( 1 ... 𝑗 ) = ( 1 ... 1 ) )
4 3 iuneq1d ( 𝑗 = 1 → 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑛 ) = 𝑛 ∈ ( 1 ... 1 ) ( 𝐹𝑛 ) )
5 fveq2 ( 𝑗 = 1 → ( 𝐹𝑗 ) = ( 𝐹 ‘ 1 ) )
6 4 5 eqeq12d ( 𝑗 = 1 → ( 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑛 ) = ( 𝐹𝑗 ) ↔ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹𝑛 ) = ( 𝐹 ‘ 1 ) ) )
7 6 imbi2d ( 𝑗 = 1 → ( ( 𝜑 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑛 ) = ( 𝐹𝑗 ) ) ↔ ( 𝜑 𝑛 ∈ ( 1 ... 1 ) ( 𝐹𝑛 ) = ( 𝐹 ‘ 1 ) ) ) )
8 oveq2 ( 𝑗 = 𝑘 → ( 1 ... 𝑗 ) = ( 1 ... 𝑘 ) )
9 8 iuneq1d ( 𝑗 = 𝑘 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑛 ) = 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) )
10 fveq2 ( 𝑗 = 𝑘 → ( 𝐹𝑗 ) = ( 𝐹𝑘 ) )
11 9 10 eqeq12d ( 𝑗 = 𝑘 → ( 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑛 ) = ( 𝐹𝑗 ) ↔ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) = ( 𝐹𝑘 ) ) )
12 11 imbi2d ( 𝑗 = 𝑘 → ( ( 𝜑 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑛 ) = ( 𝐹𝑗 ) ) ↔ ( 𝜑 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) = ( 𝐹𝑘 ) ) ) )
13 oveq2 ( 𝑗 = ( 𝑘 + 1 ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑘 + 1 ) ) )
14 13 iuneq1d ( 𝑗 = ( 𝑘 + 1 ) → 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑛 ) = 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹𝑛 ) )
15 fveq2 ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐹𝑗 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
16 14 15 eqeq12d ( 𝑗 = ( 𝑘 + 1 ) → ( 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑛 ) = ( 𝐹𝑗 ) ↔ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) )
17 16 imbi2d ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝜑 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑛 ) = ( 𝐹𝑗 ) ) ↔ ( 𝜑 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) )
18 oveq2 ( 𝑗 = 𝑖 → ( 1 ... 𝑗 ) = ( 1 ... 𝑖 ) )
19 18 iuneq1d ( 𝑗 = 𝑖 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑛 ) = 𝑛 ∈ ( 1 ... 𝑖 ) ( 𝐹𝑛 ) )
20 fveq2 ( 𝑗 = 𝑖 → ( 𝐹𝑗 ) = ( 𝐹𝑖 ) )
21 19 20 eqeq12d ( 𝑗 = 𝑖 → ( 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑛 ) = ( 𝐹𝑗 ) ↔ 𝑛 ∈ ( 1 ... 𝑖 ) ( 𝐹𝑛 ) = ( 𝐹𝑖 ) ) )
22 21 imbi2d ( 𝑗 = 𝑖 → ( ( 𝜑 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹𝑛 ) = ( 𝐹𝑗 ) ) ↔ ( 𝜑 𝑛 ∈ ( 1 ... 𝑖 ) ( 𝐹𝑛 ) = ( 𝐹𝑖 ) ) ) )
23 1z 1 ∈ ℤ
24 fzsn ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } )
25 iuneq1 ( ( 1 ... 1 ) = { 1 } → 𝑛 ∈ ( 1 ... 1 ) ( 𝐹𝑛 ) = 𝑛 ∈ { 1 } ( 𝐹𝑛 ) )
26 23 24 25 mp2b 𝑛 ∈ ( 1 ... 1 ) ( 𝐹𝑛 ) = 𝑛 ∈ { 1 } ( 𝐹𝑛 )
27 1ex 1 ∈ V
28 fveq2 ( 𝑛 = 1 → ( 𝐹𝑛 ) = ( 𝐹 ‘ 1 ) )
29 27 28 iunxsn 𝑛 ∈ { 1 } ( 𝐹𝑛 ) = ( 𝐹 ‘ 1 )
30 26 29 eqtri 𝑛 ∈ ( 1 ... 1 ) ( 𝐹𝑛 ) = ( 𝐹 ‘ 1 )
31 30 a1i ( 𝜑 𝑛 ∈ ( 1 ... 1 ) ( 𝐹𝑛 ) = ( 𝐹 ‘ 1 ) )
32 simpll ( ( ( 𝑘 ∈ ℕ ∧ 𝜑 ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) = ( 𝐹𝑘 ) ) → 𝑘 ∈ ℕ )
33 elnnuz ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ ‘ 1 ) )
34 fzsuc ( 𝑘 ∈ ( ℤ ‘ 1 ) → ( 1 ... ( 𝑘 + 1 ) ) = ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) )
35 33 34 sylbi ( 𝑘 ∈ ℕ → ( 1 ... ( 𝑘 + 1 ) ) = ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) )
36 35 iuneq1d ( 𝑘 ∈ ℕ → 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹𝑛 ) = 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹𝑛 ) )
37 iunxun 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹𝑛 ) = ( 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) ∪ 𝑛 ∈ { ( 𝑘 + 1 ) } ( 𝐹𝑛 ) )
38 ovex ( 𝑘 + 1 ) ∈ V
39 fveq2 ( 𝑛 = ( 𝑘 + 1 ) → ( 𝐹𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
40 38 39 iunxsn 𝑛 ∈ { ( 𝑘 + 1 ) } ( 𝐹𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) )
41 40 uneq2i ( 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) ∪ 𝑛 ∈ { ( 𝑘 + 1 ) } ( 𝐹𝑛 ) ) = ( 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
42 37 41 eqtri 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹𝑛 ) = ( 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
43 36 42 eqtrdi ( 𝑘 ∈ ℕ → 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹𝑛 ) = ( 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) )
44 32 43 syl ( ( ( 𝑘 ∈ ℕ ∧ 𝜑 ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) = ( 𝐹𝑘 ) ) → 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹𝑛 ) = ( 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) )
45 simpr ( ( ( 𝑘 ∈ ℕ ∧ 𝜑 ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) = ( 𝐹𝑘 ) ) → 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) = ( 𝐹𝑘 ) )
46 45 uneq1d ( ( ( 𝑘 ∈ ℕ ∧ 𝜑 ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) = ( 𝐹𝑘 ) ) → ( 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝐹𝑘 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) )
47 simplr ( ( ( 𝑘 ∈ ℕ ∧ 𝜑 ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) = ( 𝐹𝑘 ) ) → 𝜑 )
48 2 sbt [ 𝑘 / 𝑛 ] ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
49 sbim ( [ 𝑘 / 𝑛 ] ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ↔ ( [ 𝑘 / 𝑛 ] ( 𝜑𝑛 ∈ ℕ ) → [ 𝑘 / 𝑛 ] ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
50 sban ( [ 𝑘 / 𝑛 ] ( 𝜑𝑛 ∈ ℕ ) ↔ ( [ 𝑘 / 𝑛 ] 𝜑 ∧ [ 𝑘 / 𝑛 ] 𝑛 ∈ ℕ ) )
51 sbv ( [ 𝑘 / 𝑛 ] 𝜑𝜑 )
52 clelsb3 ( [ 𝑘 / 𝑛 ] 𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ )
53 51 52 anbi12i ( ( [ 𝑘 / 𝑛 ] 𝜑 ∧ [ 𝑘 / 𝑛 ] 𝑛 ∈ ℕ ) ↔ ( 𝜑𝑘 ∈ ℕ ) )
54 50 53 bitr2i ( ( 𝜑𝑘 ∈ ℕ ) ↔ [ 𝑘 / 𝑛 ] ( 𝜑𝑛 ∈ ℕ ) )
55 sbsbc ( [ 𝑘 / 𝑛 ] ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ [ 𝑘 / 𝑛 ] ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
56 sbcssg ( 𝑘 ∈ V → ( [ 𝑘 / 𝑛 ] ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ 𝑘 / 𝑛 ( 𝐹𝑛 ) ⊆ 𝑘 / 𝑛 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
57 56 elv ( [ 𝑘 / 𝑛 ] ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ 𝑘 / 𝑛 ( 𝐹𝑛 ) ⊆ 𝑘 / 𝑛 ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
58 csbfv 𝑘 / 𝑛 ( 𝐹𝑛 ) = ( 𝐹𝑘 )
59 csbfv2g ( 𝑘 ∈ V → 𝑘 / 𝑛 ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐹 𝑘 / 𝑛 ( 𝑛 + 1 ) ) )
60 59 elv 𝑘 / 𝑛 ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐹 𝑘 / 𝑛 ( 𝑛 + 1 ) )
61 csbov1g ( 𝑘 ∈ V → 𝑘 / 𝑛 ( 𝑛 + 1 ) = ( 𝑘 / 𝑛 𝑛 + 1 ) )
62 61 elv 𝑘 / 𝑛 ( 𝑛 + 1 ) = ( 𝑘 / 𝑛 𝑛 + 1 )
63 62 fveq2i ( 𝐹 𝑘 / 𝑛 ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ( 𝑘 / 𝑛 𝑛 + 1 ) )
64 vex 𝑘 ∈ V
65 64 csbvargi 𝑘 / 𝑛 𝑛 = 𝑘
66 65 oveq1i ( 𝑘 / 𝑛 𝑛 + 1 ) = ( 𝑘 + 1 )
67 66 fveq2i ( 𝐹 ‘ ( 𝑘 / 𝑛 𝑛 + 1 ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) )
68 60 63 67 3eqtri 𝑘 / 𝑛 ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) )
69 58 68 sseq12i ( 𝑘 / 𝑛 ( 𝐹𝑛 ) ⊆ 𝑘 / 𝑛 ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝐹𝑘 ) ⊆ ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
70 55 57 69 3bitrri ( ( 𝐹𝑘 ) ⊆ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ [ 𝑘 / 𝑛 ] ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) )
71 54 70 imbi12i ( ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) ⊆ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( [ 𝑘 / 𝑛 ] ( 𝜑𝑛 ∈ ℕ ) → [ 𝑘 / 𝑛 ] ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) )
72 49 71 bitr4i ( [ 𝑘 / 𝑛 ] ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐹𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ↔ ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) ⊆ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) )
73 48 72 mpbi ( ( 𝜑𝑘 ∈ ℕ ) → ( 𝐹𝑘 ) ⊆ ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
74 ssequn1 ( ( 𝐹𝑘 ) ⊆ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ( ( 𝐹𝑘 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
75 73 74 sylib ( ( 𝜑𝑘 ∈ ℕ ) → ( ( 𝐹𝑘 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
76 47 32 75 syl2anc ( ( ( 𝑘 ∈ ℕ ∧ 𝜑 ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) = ( 𝐹𝑘 ) ) → ( ( 𝐹𝑘 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
77 44 46 76 3eqtrd ( ( ( 𝑘 ∈ ℕ ∧ 𝜑 ) ∧ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) = ( 𝐹𝑘 ) ) → 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) )
78 77 exp31 ( 𝑘 ∈ ℕ → ( 𝜑 → ( 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) = ( 𝐹𝑘 ) → 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) )
79 78 a2d ( 𝑘 ∈ ℕ → ( ( 𝜑 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹𝑛 ) = ( 𝐹𝑘 ) ) → ( 𝜑 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) )
80 7 12 17 22 31 79 nnind ( 𝑖 ∈ ℕ → ( 𝜑 𝑛 ∈ ( 1 ... 𝑖 ) ( 𝐹𝑛 ) = ( 𝐹𝑖 ) ) )
81 80 impcom ( ( 𝜑𝑖 ∈ ℕ ) → 𝑛 ∈ ( 1 ... 𝑖 ) ( 𝐹𝑛 ) = ( 𝐹𝑖 ) )