| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iuninc.1 |
⊢ ( 𝜑 → 𝐹 Fn ℕ ) |
| 2 |
|
iuninc.2 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 3 |
|
oveq2 |
⊢ ( 𝑗 = 1 → ( 1 ... 𝑗 ) = ( 1 ... 1 ) ) |
| 4 |
3
|
iuneq1d |
⊢ ( 𝑗 = 1 → ∪ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) ) |
| 5 |
|
fveq2 |
⊢ ( 𝑗 = 1 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 1 ) ) |
| 6 |
4 5
|
eqeq12d |
⊢ ( 𝑗 = 1 → ( ∪ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ↔ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) ) ) |
| 7 |
6
|
imbi2d |
⊢ ( 𝑗 = 1 → ( ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ) ↔ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) ) ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑗 = 𝑘 → ( 1 ... 𝑗 ) = ( 1 ... 𝑘 ) ) |
| 9 |
8
|
iuneq1d |
⊢ ( 𝑗 = 𝑘 → ∪ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ) |
| 10 |
|
fveq2 |
⊢ ( 𝑗 = 𝑘 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 11 |
9 10
|
eqeq12d |
⊢ ( 𝑗 = 𝑘 → ( ∪ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ↔ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) ) |
| 12 |
11
|
imbi2d |
⊢ ( 𝑗 = 𝑘 → ( ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ) ↔ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 1 ... 𝑗 ) = ( 1 ... ( 𝑘 + 1 ) ) ) |
| 14 |
13
|
iuneq1d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ∪ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) ) |
| 15 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 16 |
14 15
|
eqeq12d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ↔ ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 17 |
16
|
imbi2d |
⊢ ( 𝑗 = ( 𝑘 + 1 ) → ( ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ) ↔ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 18 |
|
oveq2 |
⊢ ( 𝑗 = 𝑖 → ( 1 ... 𝑗 ) = ( 1 ... 𝑖 ) ) |
| 19 |
18
|
iuneq1d |
⊢ ( 𝑗 = 𝑖 → ∪ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑛 ) ) |
| 20 |
|
fveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝐹 ‘ 𝑗 ) = ( 𝐹 ‘ 𝑖 ) ) |
| 21 |
19 20
|
eqeq12d |
⊢ ( 𝑗 = 𝑖 → ( ∪ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ↔ ∪ 𝑛 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑖 ) ) ) |
| 22 |
21
|
imbi2d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑗 ) ) ↔ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑖 ) ) ) ) |
| 23 |
|
1z |
⊢ 1 ∈ ℤ |
| 24 |
|
fzsn |
⊢ ( 1 ∈ ℤ → ( 1 ... 1 ) = { 1 } ) |
| 25 |
|
iuneq1 |
⊢ ( ( 1 ... 1 ) = { 1 } → ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ { 1 } ( 𝐹 ‘ 𝑛 ) ) |
| 26 |
23 24 25
|
mp2b |
⊢ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ { 1 } ( 𝐹 ‘ 𝑛 ) |
| 27 |
|
1ex |
⊢ 1 ∈ V |
| 28 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) ) |
| 29 |
27 28
|
iunxsn |
⊢ ∪ 𝑛 ∈ { 1 } ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) |
| 30 |
26 29
|
eqtri |
⊢ ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) |
| 31 |
30
|
a1i |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 1 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 1 ) ) |
| 32 |
|
simpll |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ 𝜑 ) ∧ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) → 𝑘 ∈ ℕ ) |
| 33 |
|
elnnuz |
⊢ ( 𝑘 ∈ ℕ ↔ 𝑘 ∈ ( ℤ≥ ‘ 1 ) ) |
| 34 |
|
fzsuc |
⊢ ( 𝑘 ∈ ( ℤ≥ ‘ 1 ) → ( 1 ... ( 𝑘 + 1 ) ) = ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ) |
| 35 |
33 34
|
sylbi |
⊢ ( 𝑘 ∈ ℕ → ( 1 ... ( 𝑘 + 1 ) ) = ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ) |
| 36 |
35
|
iuneq1d |
⊢ ( 𝑘 ∈ ℕ → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹 ‘ 𝑛 ) ) |
| 37 |
|
iunxun |
⊢ ∪ 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹 ‘ 𝑛 ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ∪ 𝑛 ∈ { ( 𝑘 + 1 ) } ( 𝐹 ‘ 𝑛 ) ) |
| 38 |
|
ovex |
⊢ ( 𝑘 + 1 ) ∈ V |
| 39 |
|
fveq2 |
⊢ ( 𝑛 = ( 𝑘 + 1 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 40 |
38 39
|
iunxsn |
⊢ ∪ 𝑛 ∈ { ( 𝑘 + 1 ) } ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) |
| 41 |
40
|
uneq2i |
⊢ ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ∪ 𝑛 ∈ { ( 𝑘 + 1 ) } ( 𝐹 ‘ 𝑛 ) ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 42 |
37 41
|
eqtri |
⊢ ∪ 𝑛 ∈ ( ( 1 ... 𝑘 ) ∪ { ( 𝑘 + 1 ) } ) ( 𝐹 ‘ 𝑛 ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 43 |
36 42
|
eqtrdi |
⊢ ( 𝑘 ∈ ℕ → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 44 |
32 43
|
syl |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ 𝜑 ) ∧ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 45 |
|
simpr |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ 𝜑 ) ∧ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) → ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) |
| 46 |
45
|
uneq1d |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ 𝜑 ) ∧ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( ( 𝐹 ‘ 𝑘 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 47 |
|
simplr |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ 𝜑 ) ∧ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) → 𝜑 ) |
| 48 |
2
|
sbt |
⊢ [ 𝑘 / 𝑛 ] ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 49 |
|
sbim |
⊢ ( [ 𝑘 / 𝑛 ] ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ↔ ( [ 𝑘 / 𝑛 ] ( 𝜑 ∧ 𝑛 ∈ ℕ ) → [ 𝑘 / 𝑛 ] ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 50 |
|
sban |
⊢ ( [ 𝑘 / 𝑛 ] ( 𝜑 ∧ 𝑛 ∈ ℕ ) ↔ ( [ 𝑘 / 𝑛 ] 𝜑 ∧ [ 𝑘 / 𝑛 ] 𝑛 ∈ ℕ ) ) |
| 51 |
|
sbv |
⊢ ( [ 𝑘 / 𝑛 ] 𝜑 ↔ 𝜑 ) |
| 52 |
|
clelsb1 |
⊢ ( [ 𝑘 / 𝑛 ] 𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ ) |
| 53 |
51 52
|
anbi12i |
⊢ ( ( [ 𝑘 / 𝑛 ] 𝜑 ∧ [ 𝑘 / 𝑛 ] 𝑛 ∈ ℕ ) ↔ ( 𝜑 ∧ 𝑘 ∈ ℕ ) ) |
| 54 |
50 53
|
bitr2i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) ↔ [ 𝑘 / 𝑛 ] ( 𝜑 ∧ 𝑛 ∈ ℕ ) ) |
| 55 |
|
sbsbc |
⊢ ( [ 𝑘 / 𝑛 ] ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ [ 𝑘 / 𝑛 ] ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 56 |
|
sbcssg |
⊢ ( 𝑘 ∈ V → ( [ 𝑘 / 𝑛 ] ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ⦋ 𝑘 / 𝑛 ⦌ ( 𝐹 ‘ 𝑛 ) ⊆ ⦋ 𝑘 / 𝑛 ⦌ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 57 |
56
|
elv |
⊢ ( [ 𝑘 / 𝑛 ] ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ⦋ 𝑘 / 𝑛 ⦌ ( 𝐹 ‘ 𝑛 ) ⊆ ⦋ 𝑘 / 𝑛 ⦌ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 58 |
|
csbfv |
⊢ ⦋ 𝑘 / 𝑛 ⦌ ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) |
| 59 |
|
csbfv2g |
⊢ ( 𝑘 ∈ V → ⦋ 𝑘 / 𝑛 ⦌ ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ⦋ 𝑘 / 𝑛 ⦌ ( 𝑛 + 1 ) ) ) |
| 60 |
59
|
elv |
⊢ ⦋ 𝑘 / 𝑛 ⦌ ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ⦋ 𝑘 / 𝑛 ⦌ ( 𝑛 + 1 ) ) |
| 61 |
|
csbov1g |
⊢ ( 𝑘 ∈ V → ⦋ 𝑘 / 𝑛 ⦌ ( 𝑛 + 1 ) = ( ⦋ 𝑘 / 𝑛 ⦌ 𝑛 + 1 ) ) |
| 62 |
61
|
elv |
⊢ ⦋ 𝑘 / 𝑛 ⦌ ( 𝑛 + 1 ) = ( ⦋ 𝑘 / 𝑛 ⦌ 𝑛 + 1 ) |
| 63 |
62
|
fveq2i |
⊢ ( 𝐹 ‘ ⦋ 𝑘 / 𝑛 ⦌ ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ( ⦋ 𝑘 / 𝑛 ⦌ 𝑛 + 1 ) ) |
| 64 |
|
vex |
⊢ 𝑘 ∈ V |
| 65 |
64
|
csbvargi |
⊢ ⦋ 𝑘 / 𝑛 ⦌ 𝑛 = 𝑘 |
| 66 |
65
|
oveq1i |
⊢ ( ⦋ 𝑘 / 𝑛 ⦌ 𝑛 + 1 ) = ( 𝑘 + 1 ) |
| 67 |
66
|
fveq2i |
⊢ ( 𝐹 ‘ ( ⦋ 𝑘 / 𝑛 ⦌ 𝑛 + 1 ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) |
| 68 |
60 63 67
|
3eqtri |
⊢ ⦋ 𝑘 / 𝑛 ⦌ ( 𝐹 ‘ ( 𝑛 + 1 ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) |
| 69 |
58 68
|
sseq12i |
⊢ ( ⦋ 𝑘 / 𝑛 ⦌ ( 𝐹 ‘ 𝑛 ) ⊆ ⦋ 𝑘 / 𝑛 ⦌ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ↔ ( 𝐹 ‘ 𝑘 ) ⊆ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 70 |
55 57 69
|
3bitrri |
⊢ ( ( 𝐹 ‘ 𝑘 ) ⊆ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ [ 𝑘 / 𝑛 ] ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) |
| 71 |
54 70
|
imbi12i |
⊢ ( ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ⊆ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ↔ ( [ 𝑘 / 𝑛 ] ( 𝜑 ∧ 𝑛 ∈ ℕ ) → [ 𝑘 / 𝑛 ] ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ) |
| 72 |
49 71
|
bitr4i |
⊢ ( [ 𝑘 / 𝑛 ] ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ⊆ ( 𝐹 ‘ ( 𝑛 + 1 ) ) ) ↔ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ⊆ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) |
| 73 |
48 72
|
mpbi |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( 𝐹 ‘ 𝑘 ) ⊆ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 74 |
|
ssequn1 |
⊢ ( ( 𝐹 ‘ 𝑘 ) ⊆ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ↔ ( ( 𝐹 ‘ 𝑘 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 75 |
73 74
|
sylib |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ ℕ ) → ( ( 𝐹 ‘ 𝑘 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 76 |
47 32 75
|
syl2anc |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ 𝜑 ) ∧ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) → ( ( 𝐹 ‘ 𝑘 ) ∪ ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 77 |
44 46 76
|
3eqtrd |
⊢ ( ( ( 𝑘 ∈ ℕ ∧ 𝜑 ) ∧ ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) |
| 78 |
77
|
exp31 |
⊢ ( 𝑘 ∈ ℕ → ( 𝜑 → ( ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 79 |
78
|
a2d |
⊢ ( 𝑘 ∈ ℕ → ( ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝑘 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑘 ) ) → ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... ( 𝑘 + 1 ) ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ ( 𝑘 + 1 ) ) ) ) ) |
| 80 |
7 12 17 22 31 79
|
nnind |
⊢ ( 𝑖 ∈ ℕ → ( 𝜑 → ∪ 𝑛 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑖 ) ) ) |
| 81 |
80
|
impcom |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ℕ ) → ∪ 𝑛 ∈ ( 1 ... 𝑖 ) ( 𝐹 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑖 ) ) |