Metamath Proof Explorer


Theorem measiuns

Description: The measure of the union of a collection of sets, expressed as the sum of a disjoint set. This is used as a lemma for both measiun and meascnbl . (Contributed by Thierry Arnoux, 22-Jan-2017) (Proof shortened by Thierry Arnoux, 7-Feb-2017)

Ref Expression
Hypotheses measiuns.0 𝑛 𝐵
measiuns.1 ( 𝑛 = 𝑘𝐴 = 𝐵 )
measiuns.2 ( 𝜑 → ( 𝑁 = ℕ ∨ 𝑁 = ( 1 ..^ 𝐼 ) ) )
measiuns.3 ( 𝜑𝑀 ∈ ( measures ‘ 𝑆 ) )
measiuns.4 ( ( 𝜑𝑛𝑁 ) → 𝐴𝑆 )
Assertion measiuns ( 𝜑 → ( 𝑀 𝑛𝑁 𝐴 ) = Σ* 𝑛𝑁 ( 𝑀 ‘ ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 measiuns.0 𝑛 𝐵
2 measiuns.1 ( 𝑛 = 𝑘𝐴 = 𝐵 )
3 measiuns.2 ( 𝜑 → ( 𝑁 = ℕ ∨ 𝑁 = ( 1 ..^ 𝐼 ) ) )
4 measiuns.3 ( 𝜑𝑀 ∈ ( measures ‘ 𝑆 ) )
5 measiuns.4 ( ( 𝜑𝑛𝑁 ) → 𝐴𝑆 )
6 1 2 3 iundisjcnt ( 𝜑 𝑛𝑁 𝐴 = 𝑛𝑁 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) )
7 6 fveq2d ( 𝜑 → ( 𝑀 𝑛𝑁 𝐴 ) = ( 𝑀 𝑛𝑁 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) )
8 measbase ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ran sigAlgebra )
9 4 8 syl ( 𝜑𝑆 ran sigAlgebra )
10 9 adantr ( ( 𝜑𝑛𝑁 ) → 𝑆 ran sigAlgebra )
11 simpll ( ( ( 𝜑𝑛𝑁 ) ∧ 𝑘 ∈ ( 1 ..^ 𝑛 ) ) → 𝜑 )
12 fzossnn ( 1 ..^ 𝑛 ) ⊆ ℕ
13 simpr ( ( ( 𝜑𝑛𝑁 ) ∧ 𝑁 = ℕ ) → 𝑁 = ℕ )
14 12 13 sseqtrrid ( ( ( 𝜑𝑛𝑁 ) ∧ 𝑁 = ℕ ) → ( 1 ..^ 𝑛 ) ⊆ 𝑁 )
15 simplr ( ( ( 𝜑𝑛𝑁 ) ∧ 𝑁 = ( 1 ..^ 𝐼 ) ) → 𝑛𝑁 )
16 simpr ( ( ( 𝜑𝑛𝑁 ) ∧ 𝑁 = ( 1 ..^ 𝐼 ) ) → 𝑁 = ( 1 ..^ 𝐼 ) )
17 15 16 eleqtrd ( ( ( 𝜑𝑛𝑁 ) ∧ 𝑁 = ( 1 ..^ 𝐼 ) ) → 𝑛 ∈ ( 1 ..^ 𝐼 ) )
18 elfzouz2 ( 𝑛 ∈ ( 1 ..^ 𝐼 ) → 𝐼 ∈ ( ℤ𝑛 ) )
19 fzoss2 ( 𝐼 ∈ ( ℤ𝑛 ) → ( 1 ..^ 𝑛 ) ⊆ ( 1 ..^ 𝐼 ) )
20 17 18 19 3syl ( ( ( 𝜑𝑛𝑁 ) ∧ 𝑁 = ( 1 ..^ 𝐼 ) ) → ( 1 ..^ 𝑛 ) ⊆ ( 1 ..^ 𝐼 ) )
21 20 16 sseqtrrd ( ( ( 𝜑𝑛𝑁 ) ∧ 𝑁 = ( 1 ..^ 𝐼 ) ) → ( 1 ..^ 𝑛 ) ⊆ 𝑁 )
22 3 adantr ( ( 𝜑𝑛𝑁 ) → ( 𝑁 = ℕ ∨ 𝑁 = ( 1 ..^ 𝐼 ) ) )
23 14 21 22 mpjaodan ( ( 𝜑𝑛𝑁 ) → ( 1 ..^ 𝑛 ) ⊆ 𝑁 )
24 23 sselda ( ( ( 𝜑𝑛𝑁 ) ∧ 𝑘 ∈ ( 1 ..^ 𝑛 ) ) → 𝑘𝑁 )
25 5 sbimi ( [ 𝑘 / 𝑛 ] ( 𝜑𝑛𝑁 ) → [ 𝑘 / 𝑛 ] 𝐴𝑆 )
26 sban ( [ 𝑘 / 𝑛 ] ( 𝜑𝑛𝑁 ) ↔ ( [ 𝑘 / 𝑛 ] 𝜑 ∧ [ 𝑘 / 𝑛 ] 𝑛𝑁 ) )
27 sbv ( [ 𝑘 / 𝑛 ] 𝜑𝜑 )
28 clelsb1 ( [ 𝑘 / 𝑛 ] 𝑛𝑁𝑘𝑁 )
29 27 28 anbi12i ( ( [ 𝑘 / 𝑛 ] 𝜑 ∧ [ 𝑘 / 𝑛 ] 𝑛𝑁 ) ↔ ( 𝜑𝑘𝑁 ) )
30 26 29 bitri ( [ 𝑘 / 𝑛 ] ( 𝜑𝑛𝑁 ) ↔ ( 𝜑𝑘𝑁 ) )
31 sbsbc ( [ 𝑘 / 𝑛 ] 𝐴𝑆[ 𝑘 / 𝑛 ] 𝐴𝑆 )
32 sbcel1g ( 𝑘 ∈ V → ( [ 𝑘 / 𝑛 ] 𝐴𝑆 𝑘 / 𝑛 𝐴𝑆 ) )
33 32 elv ( [ 𝑘 / 𝑛 ] 𝐴𝑆 𝑘 / 𝑛 𝐴𝑆 )
34 nfcv 𝑘 𝐴
35 34 1 2 cbvcsbw 𝑘 / 𝑛 𝐴 = 𝑘 / 𝑘 𝐵
36 csbid 𝑘 / 𝑘 𝐵 = 𝐵
37 35 36 eqtri 𝑘 / 𝑛 𝐴 = 𝐵
38 37 eleq1i ( 𝑘 / 𝑛 𝐴𝑆𝐵𝑆 )
39 31 33 38 3bitri ( [ 𝑘 / 𝑛 ] 𝐴𝑆𝐵𝑆 )
40 25 30 39 3imtr3i ( ( 𝜑𝑘𝑁 ) → 𝐵𝑆 )
41 11 24 40 syl2anc ( ( ( 𝜑𝑛𝑁 ) ∧ 𝑘 ∈ ( 1 ..^ 𝑛 ) ) → 𝐵𝑆 )
42 41 ralrimiva ( ( 𝜑𝑛𝑁 ) → ∀ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵𝑆 )
43 sigaclfu2 ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵𝑆 ) → 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵𝑆 )
44 10 42 43 syl2anc ( ( 𝜑𝑛𝑁 ) → 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵𝑆 )
45 difelsiga ( ( 𝑆 ran sigAlgebra ∧ 𝐴𝑆 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵𝑆 ) → ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∈ 𝑆 )
46 10 5 44 45 syl3anc ( ( 𝜑𝑛𝑁 ) → ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∈ 𝑆 )
47 46 ralrimiva ( 𝜑 → ∀ 𝑛𝑁 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∈ 𝑆 )
48 eqimss ( 𝑁 = ℕ → 𝑁 ⊆ ℕ )
49 fzossnn ( 1 ..^ 𝐼 ) ⊆ ℕ
50 sseq1 ( 𝑁 = ( 1 ..^ 𝐼 ) → ( 𝑁 ⊆ ℕ ↔ ( 1 ..^ 𝐼 ) ⊆ ℕ ) )
51 49 50 mpbiri ( 𝑁 = ( 1 ..^ 𝐼 ) → 𝑁 ⊆ ℕ )
52 48 51 jaoi ( ( 𝑁 = ℕ ∨ 𝑁 = ( 1 ..^ 𝐼 ) ) → 𝑁 ⊆ ℕ )
53 3 52 syl ( 𝜑𝑁 ⊆ ℕ )
54 nnct ℕ ≼ ω
55 ssct ( ( 𝑁 ⊆ ℕ ∧ ℕ ≼ ω ) → 𝑁 ≼ ω )
56 53 54 55 sylancl ( 𝜑𝑁 ≼ ω )
57 1 2 3 iundisj2cnt ( 𝜑Disj 𝑛𝑁 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) )
58 measvuni ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑛𝑁 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∈ 𝑆 ∧ ( 𝑁 ≼ ω ∧ Disj 𝑛𝑁 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) → ( 𝑀 𝑛𝑁 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = Σ* 𝑛𝑁 ( 𝑀 ‘ ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) )
59 4 47 56 57 58 syl112anc ( 𝜑 → ( 𝑀 𝑛𝑁 ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = Σ* 𝑛𝑁 ( 𝑀 ‘ ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) )
60 7 59 eqtrd ( 𝜑 → ( 𝑀 𝑛𝑁 𝐴 ) = Σ* 𝑛𝑁 ( 𝑀 ‘ ( 𝐴 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) )