Step |
Hyp |
Ref |
Expression |
1 |
|
measiuns.0 |
⊢ Ⅎ 𝑛 𝐵 |
2 |
|
measiuns.1 |
⊢ ( 𝑛 = 𝑘 → 𝐴 = 𝐵 ) |
3 |
|
measiuns.2 |
⊢ ( 𝜑 → ( 𝑁 = ℕ ∨ 𝑁 = ( 1 ..^ 𝐼 ) ) ) |
4 |
|
measiuns.3 |
⊢ ( 𝜑 → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
5 |
|
measiuns.4 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) → 𝐴 ∈ 𝑆 ) |
6 |
1 2 3
|
iundisjcnt |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑁 𝐴 = ∪ 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
7 |
6
|
fveq2d |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑁 𝐴 ) = ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
8 |
|
measbase |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
9 |
4 8
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
11 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 1 ..^ 𝑛 ) ) → 𝜑 ) |
12 |
|
fzossnn |
⊢ ( 1 ..^ 𝑛 ) ⊆ ℕ |
13 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) ∧ 𝑁 = ℕ ) → 𝑁 = ℕ ) |
14 |
12 13
|
sseqtrrid |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) ∧ 𝑁 = ℕ ) → ( 1 ..^ 𝑛 ) ⊆ 𝑁 ) |
15 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) ∧ 𝑁 = ( 1 ..^ 𝐼 ) ) → 𝑛 ∈ 𝑁 ) |
16 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) ∧ 𝑁 = ( 1 ..^ 𝐼 ) ) → 𝑁 = ( 1 ..^ 𝐼 ) ) |
17 |
15 16
|
eleqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) ∧ 𝑁 = ( 1 ..^ 𝐼 ) ) → 𝑛 ∈ ( 1 ..^ 𝐼 ) ) |
18 |
|
elfzouz2 |
⊢ ( 𝑛 ∈ ( 1 ..^ 𝐼 ) → 𝐼 ∈ ( ℤ≥ ‘ 𝑛 ) ) |
19 |
|
fzoss2 |
⊢ ( 𝐼 ∈ ( ℤ≥ ‘ 𝑛 ) → ( 1 ..^ 𝑛 ) ⊆ ( 1 ..^ 𝐼 ) ) |
20 |
17 18 19
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) ∧ 𝑁 = ( 1 ..^ 𝐼 ) ) → ( 1 ..^ 𝑛 ) ⊆ ( 1 ..^ 𝐼 ) ) |
21 |
20 16
|
sseqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) ∧ 𝑁 = ( 1 ..^ 𝐼 ) ) → ( 1 ..^ 𝑛 ) ⊆ 𝑁 ) |
22 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) → ( 𝑁 = ℕ ∨ 𝑁 = ( 1 ..^ 𝐼 ) ) ) |
23 |
14 21 22
|
mpjaodan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) → ( 1 ..^ 𝑛 ) ⊆ 𝑁 ) |
24 |
23
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 1 ..^ 𝑛 ) ) → 𝑘 ∈ 𝑁 ) |
25 |
5
|
sbimi |
⊢ ( [ 𝑘 / 𝑛 ] ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) → [ 𝑘 / 𝑛 ] 𝐴 ∈ 𝑆 ) |
26 |
|
sban |
⊢ ( [ 𝑘 / 𝑛 ] ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) ↔ ( [ 𝑘 / 𝑛 ] 𝜑 ∧ [ 𝑘 / 𝑛 ] 𝑛 ∈ 𝑁 ) ) |
27 |
|
sbv |
⊢ ( [ 𝑘 / 𝑛 ] 𝜑 ↔ 𝜑 ) |
28 |
|
clelsb1 |
⊢ ( [ 𝑘 / 𝑛 ] 𝑛 ∈ 𝑁 ↔ 𝑘 ∈ 𝑁 ) |
29 |
27 28
|
anbi12i |
⊢ ( ( [ 𝑘 / 𝑛 ] 𝜑 ∧ [ 𝑘 / 𝑛 ] 𝑛 ∈ 𝑁 ) ↔ ( 𝜑 ∧ 𝑘 ∈ 𝑁 ) ) |
30 |
26 29
|
bitri |
⊢ ( [ 𝑘 / 𝑛 ] ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) ↔ ( 𝜑 ∧ 𝑘 ∈ 𝑁 ) ) |
31 |
|
sbsbc |
⊢ ( [ 𝑘 / 𝑛 ] 𝐴 ∈ 𝑆 ↔ [ 𝑘 / 𝑛 ] 𝐴 ∈ 𝑆 ) |
32 |
|
sbcel1g |
⊢ ( 𝑘 ∈ V → ( [ 𝑘 / 𝑛 ] 𝐴 ∈ 𝑆 ↔ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ 𝑆 ) ) |
33 |
32
|
elv |
⊢ ( [ 𝑘 / 𝑛 ] 𝐴 ∈ 𝑆 ↔ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ 𝑆 ) |
34 |
|
nfcv |
⊢ Ⅎ 𝑘 𝐴 |
35 |
34 1 2
|
cbvcsbw |
⊢ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 = ⦋ 𝑘 / 𝑘 ⦌ 𝐵 |
36 |
|
csbid |
⊢ ⦋ 𝑘 / 𝑘 ⦌ 𝐵 = 𝐵 |
37 |
35 36
|
eqtri |
⊢ ⦋ 𝑘 / 𝑛 ⦌ 𝐴 = 𝐵 |
38 |
37
|
eleq1i |
⊢ ( ⦋ 𝑘 / 𝑛 ⦌ 𝐴 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆 ) |
39 |
31 33 38
|
3bitri |
⊢ ( [ 𝑘 / 𝑛 ] 𝐴 ∈ 𝑆 ↔ 𝐵 ∈ 𝑆 ) |
40 |
25 30 39
|
3imtr3i |
⊢ ( ( 𝜑 ∧ 𝑘 ∈ 𝑁 ) → 𝐵 ∈ 𝑆 ) |
41 |
11 24 40
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) ∧ 𝑘 ∈ ( 1 ..^ 𝑛 ) ) → 𝐵 ∈ 𝑆 ) |
42 |
41
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) → ∀ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ∈ 𝑆 ) |
43 |
|
sigaclfu2 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ∈ 𝑆 ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ∈ 𝑆 ) |
44 |
10 42 43
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ∈ 𝑆 ) |
45 |
|
difelsiga |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐴 ∈ 𝑆 ∧ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ∈ 𝑆 ) → ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∈ 𝑆 ) |
46 |
10 5 44 45
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑁 ) → ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∈ 𝑆 ) |
47 |
46
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∈ 𝑆 ) |
48 |
|
eqimss |
⊢ ( 𝑁 = ℕ → 𝑁 ⊆ ℕ ) |
49 |
|
fzossnn |
⊢ ( 1 ..^ 𝐼 ) ⊆ ℕ |
50 |
|
sseq1 |
⊢ ( 𝑁 = ( 1 ..^ 𝐼 ) → ( 𝑁 ⊆ ℕ ↔ ( 1 ..^ 𝐼 ) ⊆ ℕ ) ) |
51 |
49 50
|
mpbiri |
⊢ ( 𝑁 = ( 1 ..^ 𝐼 ) → 𝑁 ⊆ ℕ ) |
52 |
48 51
|
jaoi |
⊢ ( ( 𝑁 = ℕ ∨ 𝑁 = ( 1 ..^ 𝐼 ) ) → 𝑁 ⊆ ℕ ) |
53 |
3 52
|
syl |
⊢ ( 𝜑 → 𝑁 ⊆ ℕ ) |
54 |
|
nnct |
⊢ ℕ ≼ ω |
55 |
|
ssct |
⊢ ( ( 𝑁 ⊆ ℕ ∧ ℕ ≼ ω ) → 𝑁 ≼ ω ) |
56 |
53 54 55
|
sylancl |
⊢ ( 𝜑 → 𝑁 ≼ ω ) |
57 |
1 2 3
|
iundisj2cnt |
⊢ ( 𝜑 → Disj 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) |
58 |
|
measvuni |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∀ 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ∈ 𝑆 ∧ ( 𝑁 ≼ ω ∧ Disj 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) → ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = Σ* 𝑛 ∈ 𝑁 ( 𝑀 ‘ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
59 |
4 47 56 57 58
|
syl112anc |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑁 ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) = Σ* 𝑛 ∈ 𝑁 ( 𝑀 ‘ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |
60 |
7 59
|
eqtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑛 ∈ 𝑁 𝐴 ) = Σ* 𝑛 ∈ 𝑁 ( 𝑀 ‘ ( 𝐴 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝐵 ) ) ) |