Metamath Proof Explorer


Theorem measiun

Description: A measure is sub-additive. (Contributed by Thierry Arnoux, 30-Dec-2016) (Proof shortened by Thierry Arnoux, 7-Feb-2017)

Ref Expression
Hypotheses measiun.1 ( 𝜑𝑀 ∈ ( measures ‘ 𝑆 ) )
measiun.2 ( 𝜑𝐴𝑆 )
measiun.3 ( ( 𝜑𝑛 ∈ ℕ ) → 𝐵𝑆 )
measiun.4 ( 𝜑𝐴 𝑛 ∈ ℕ 𝐵 )
Assertion measiun ( 𝜑 → ( 𝑀𝐴 ) ≤ Σ* 𝑛 ∈ ℕ ( 𝑀𝐵 ) )

Proof

Step Hyp Ref Expression
1 measiun.1 ( 𝜑𝑀 ∈ ( measures ‘ 𝑆 ) )
2 measiun.2 ( 𝜑𝐴𝑆 )
3 measiun.3 ( ( 𝜑𝑛 ∈ ℕ ) → 𝐵𝑆 )
4 measiun.4 ( 𝜑𝐴 𝑛 ∈ ℕ 𝐵 )
5 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
6 measvxrge0 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴𝑆 ) → ( 𝑀𝐴 ) ∈ ( 0 [,] +∞ ) )
7 1 2 6 syl2anc ( 𝜑 → ( 𝑀𝐴 ) ∈ ( 0 [,] +∞ ) )
8 5 7 sseldi ( 𝜑 → ( 𝑀𝐴 ) ∈ ℝ* )
9 measbase ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ran sigAlgebra )
10 1 9 syl ( 𝜑𝑆 ran sigAlgebra )
11 3 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ 𝐵𝑆 )
12 sigaclcu2 ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑛 ∈ ℕ 𝐵𝑆 ) → 𝑛 ∈ ℕ 𝐵𝑆 )
13 10 11 12 syl2anc ( 𝜑 𝑛 ∈ ℕ 𝐵𝑆 )
14 measvxrge0 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝑛 ∈ ℕ 𝐵𝑆 ) → ( 𝑀 𝑛 ∈ ℕ 𝐵 ) ∈ ( 0 [,] +∞ ) )
15 1 13 14 syl2anc ( 𝜑 → ( 𝑀 𝑛 ∈ ℕ 𝐵 ) ∈ ( 0 [,] +∞ ) )
16 5 15 sseldi ( 𝜑 → ( 𝑀 𝑛 ∈ ℕ 𝐵 ) ∈ ℝ* )
17 nnex ℕ ∈ V
18 1 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑀 ∈ ( measures ‘ 𝑆 ) )
19 measvxrge0 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐵𝑆 ) → ( 𝑀𝐵 ) ∈ ( 0 [,] +∞ ) )
20 18 3 19 syl2anc ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀𝐵 ) ∈ ( 0 [,] +∞ ) )
21 20 ralrimiva ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝑀𝐵 ) ∈ ( 0 [,] +∞ ) )
22 nfcv 𝑛
23 22 esumcl ( ( ℕ ∈ V ∧ ∀ 𝑛 ∈ ℕ ( 𝑀𝐵 ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑛 ∈ ℕ ( 𝑀𝐵 ) ∈ ( 0 [,] +∞ ) )
24 17 21 23 sylancr ( 𝜑 → Σ* 𝑛 ∈ ℕ ( 𝑀𝐵 ) ∈ ( 0 [,] +∞ ) )
25 5 24 sseldi ( 𝜑 → Σ* 𝑛 ∈ ℕ ( 𝑀𝐵 ) ∈ ℝ* )
26 1 2 13 4 measssd ( 𝜑 → ( 𝑀𝐴 ) ≤ ( 𝑀 𝑛 ∈ ℕ 𝐵 ) )
27 nfcsb1v 𝑛 𝑘 / 𝑛 𝐵
28 csbeq1a ( 𝑛 = 𝑘𝐵 = 𝑘 / 𝑛 𝐵 )
29 eqidd ( 𝜑 → ℕ = ℕ )
30 29 orcd ( 𝜑 → ( ℕ = ℕ ∨ ℕ = ( 1 ..^ 𝑚 ) ) )
31 27 28 30 1 3 measiuns ( 𝜑 → ( 𝑀 𝑛 ∈ ℕ 𝐵 ) = Σ* 𝑛 ∈ ℕ ( 𝑀 ‘ ( 𝐵 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵 ) ) )
32 17 a1i ( 𝜑 → ℕ ∈ V )
33 10 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑆 ran sigAlgebra )
34 nfv 𝑛 𝜑
35 nfcv 𝑛 𝑘
36 35 nfel1 𝑛 𝑘 ∈ ℕ
37 27 nfel1 𝑛 𝑘 / 𝑛 𝐵𝑆
38 36 37 nfim 𝑛 ( 𝑘 ∈ ℕ → 𝑘 / 𝑛 𝐵𝑆 )
39 34 38 nfim 𝑛 ( 𝜑 → ( 𝑘 ∈ ℕ → 𝑘 / 𝑛 𝐵𝑆 ) )
40 eleq1w ( 𝑛 = 𝑘 → ( 𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ ) )
41 28 eleq1d ( 𝑛 = 𝑘 → ( 𝐵𝑆 𝑘 / 𝑛 𝐵𝑆 ) )
42 40 41 imbi12d ( 𝑛 = 𝑘 → ( ( 𝑛 ∈ ℕ → 𝐵𝑆 ) ↔ ( 𝑘 ∈ ℕ → 𝑘 / 𝑛 𝐵𝑆 ) ) )
43 42 imbi2d ( 𝑛 = 𝑘 → ( ( 𝜑 → ( 𝑛 ∈ ℕ → 𝐵𝑆 ) ) ↔ ( 𝜑 → ( 𝑘 ∈ ℕ → 𝑘 / 𝑛 𝐵𝑆 ) ) ) )
44 3 ex ( 𝜑 → ( 𝑛 ∈ ℕ → 𝐵𝑆 ) )
45 39 43 44 chvarfv ( 𝜑 → ( 𝑘 ∈ ℕ → 𝑘 / 𝑛 𝐵𝑆 ) )
46 45 ralrimiv ( 𝜑 → ∀ 𝑘 ∈ ℕ 𝑘 / 𝑛 𝐵𝑆 )
47 fzossnn ( 1 ..^ 𝑛 ) ⊆ ℕ
48 ssralv ( ( 1 ..^ 𝑛 ) ⊆ ℕ → ( ∀ 𝑘 ∈ ℕ 𝑘 / 𝑛 𝐵𝑆 → ∀ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵𝑆 ) )
49 47 48 ax-mp ( ∀ 𝑘 ∈ ℕ 𝑘 / 𝑛 𝐵𝑆 → ∀ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵𝑆 )
50 sigaclfu2 ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵𝑆 ) → 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵𝑆 )
51 49 50 sylan2 ( ( 𝑆 ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ 𝑘 / 𝑛 𝐵𝑆 ) → 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵𝑆 )
52 10 46 51 syl2anc ( 𝜑 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵𝑆 )
53 52 adantr ( ( 𝜑𝑛 ∈ ℕ ) → 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵𝑆 )
54 difelsiga ( ( 𝑆 ran sigAlgebra ∧ 𝐵𝑆 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵𝑆 ) → ( 𝐵 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵 ) ∈ 𝑆 )
55 33 3 53 54 syl3anc ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐵 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵 ) ∈ 𝑆 )
56 measvxrge0 ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐵 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵 ) ∈ 𝑆 ) → ( 𝑀 ‘ ( 𝐵 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵 ) ) ∈ ( 0 [,] +∞ ) )
57 18 55 56 syl2anc ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐵 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵 ) ) ∈ ( 0 [,] +∞ ) )
58 difssd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝐵 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵 ) ⊆ 𝐵 )
59 18 55 3 58 measssd ( ( 𝜑𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐵 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵 ) ) ≤ ( 𝑀𝐵 ) )
60 32 57 20 59 esumle ( 𝜑 → Σ* 𝑛 ∈ ℕ ( 𝑀 ‘ ( 𝐵 𝑘 ∈ ( 1 ..^ 𝑛 ) 𝑘 / 𝑛 𝐵 ) ) ≤ Σ* 𝑛 ∈ ℕ ( 𝑀𝐵 ) )
61 31 60 eqbrtrd ( 𝜑 → ( 𝑀 𝑛 ∈ ℕ 𝐵 ) ≤ Σ* 𝑛 ∈ ℕ ( 𝑀𝐵 ) )
62 8 16 25 26 61 xrletrd ( 𝜑 → ( 𝑀𝐴 ) ≤ Σ* 𝑛 ∈ ℕ ( 𝑀𝐵 ) )