| Step |
Hyp |
Ref |
Expression |
| 1 |
|
measiun.1 |
⊢ ( 𝜑 → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
| 2 |
|
measiun.2 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑆 ) |
| 3 |
|
measiun.3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝐵 ∈ 𝑆 ) |
| 4 |
|
measiun.4 |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑛 ∈ ℕ 𝐵 ) |
| 5 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 6 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐴 ∈ 𝑆 ) → ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
| 7 |
1 2 6
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
| 8 |
5 7
|
sselid |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ∈ ℝ* ) |
| 9 |
|
measbase |
⊢ ( 𝑀 ∈ ( measures ‘ 𝑆 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 10 |
1 9
|
syl |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 11 |
3
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ 𝐵 ∈ 𝑆 ) |
| 12 |
|
sigaclcu2 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑛 ∈ ℕ 𝐵 ∈ 𝑆 ) → ∪ 𝑛 ∈ ℕ 𝐵 ∈ 𝑆 ) |
| 13 |
10 11 12
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ 𝐵 ∈ 𝑆 ) |
| 14 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ∪ 𝑛 ∈ ℕ 𝐵 ∈ 𝑆 ) → ( 𝑀 ‘ ∪ 𝑛 ∈ ℕ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 15 |
1 13 14
|
syl2anc |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑛 ∈ ℕ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 16 |
5 15
|
sselid |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑛 ∈ ℕ 𝐵 ) ∈ ℝ* ) |
| 17 |
|
nnex |
⊢ ℕ ∈ V |
| 18 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑀 ∈ ( measures ‘ 𝑆 ) ) |
| 19 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ 𝐵 ∈ 𝑆 ) → ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 20 |
18 3 19
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 21 |
20
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ℕ ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 22 |
|
nfcv |
⊢ Ⅎ 𝑛 ℕ |
| 23 |
22
|
esumcl |
⊢ ( ( ℕ ∈ V ∧ ∀ 𝑛 ∈ ℕ ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) → Σ* 𝑛 ∈ ℕ ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 24 |
17 21 23
|
sylancr |
⊢ ( 𝜑 → Σ* 𝑛 ∈ ℕ ( 𝑀 ‘ 𝐵 ) ∈ ( 0 [,] +∞ ) ) |
| 25 |
5 24
|
sselid |
⊢ ( 𝜑 → Σ* 𝑛 ∈ ℕ ( 𝑀 ‘ 𝐵 ) ∈ ℝ* ) |
| 26 |
1 2 13 4
|
measssd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≤ ( 𝑀 ‘ ∪ 𝑛 ∈ ℕ 𝐵 ) ) |
| 27 |
|
nfcsb1v |
⊢ Ⅎ 𝑛 ⦋ 𝑘 / 𝑛 ⦌ 𝐵 |
| 28 |
|
csbeq1a |
⊢ ( 𝑛 = 𝑘 → 𝐵 = ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) |
| 29 |
|
eqidd |
⊢ ( 𝜑 → ℕ = ℕ ) |
| 30 |
29
|
orcd |
⊢ ( 𝜑 → ( ℕ = ℕ ∨ ℕ = ( 1 ..^ 𝑚 ) ) ) |
| 31 |
27 28 30 1 3
|
measiuns |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑛 ∈ ℕ 𝐵 ) = Σ* 𝑛 ∈ ℕ ( 𝑀 ‘ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ) ) |
| 32 |
17
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
| 33 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 34 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 35 |
|
nfcv |
⊢ Ⅎ 𝑛 𝑘 |
| 36 |
35
|
nfel1 |
⊢ Ⅎ 𝑛 𝑘 ∈ ℕ |
| 37 |
27
|
nfel1 |
⊢ Ⅎ 𝑛 ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 |
| 38 |
36 37
|
nfim |
⊢ Ⅎ 𝑛 ( 𝑘 ∈ ℕ → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 ) |
| 39 |
34 38
|
nfim |
⊢ Ⅎ 𝑛 ( 𝜑 → ( 𝑘 ∈ ℕ → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 ) ) |
| 40 |
|
eleq1w |
⊢ ( 𝑛 = 𝑘 → ( 𝑛 ∈ ℕ ↔ 𝑘 ∈ ℕ ) ) |
| 41 |
28
|
eleq1d |
⊢ ( 𝑛 = 𝑘 → ( 𝐵 ∈ 𝑆 ↔ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 ) ) |
| 42 |
40 41
|
imbi12d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝑛 ∈ ℕ → 𝐵 ∈ 𝑆 ) ↔ ( 𝑘 ∈ ℕ → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 ) ) ) |
| 43 |
42
|
imbi2d |
⊢ ( 𝑛 = 𝑘 → ( ( 𝜑 → ( 𝑛 ∈ ℕ → 𝐵 ∈ 𝑆 ) ) ↔ ( 𝜑 → ( 𝑘 ∈ ℕ → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 ) ) ) ) |
| 44 |
3
|
ex |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ → 𝐵 ∈ 𝑆 ) ) |
| 45 |
39 43 44
|
chvarfv |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ → ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 ) ) |
| 46 |
45
|
ralrimiv |
⊢ ( 𝜑 → ∀ 𝑘 ∈ ℕ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 ) |
| 47 |
|
fzossnn |
⊢ ( 1 ..^ 𝑛 ) ⊆ ℕ |
| 48 |
|
ssralv |
⊢ ( ( 1 ..^ 𝑛 ) ⊆ ℕ → ( ∀ 𝑘 ∈ ℕ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 → ∀ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 ) ) |
| 49 |
47 48
|
ax-mp |
⊢ ( ∀ 𝑘 ∈ ℕ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 → ∀ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 ) |
| 50 |
|
sigaclfu2 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 ) |
| 51 |
49 50
|
sylan2 |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑘 ∈ ℕ ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 ) |
| 52 |
10 46 51
|
syl2anc |
⊢ ( 𝜑 → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 ) |
| 54 |
|
difelsiga |
⊢ ( ( 𝑆 ∈ ∪ ran sigAlgebra ∧ 𝐵 ∈ 𝑆 ∧ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ∈ 𝑆 ) → ( 𝐵 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ∈ 𝑆 ) |
| 55 |
33 3 53 54
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ∈ 𝑆 ) |
| 56 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ 𝑆 ) ∧ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ∈ 𝑆 ) → ( 𝑀 ‘ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 57 |
18 55 56
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ) ∈ ( 0 [,] +∞ ) ) |
| 58 |
|
difssd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐵 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ⊆ 𝐵 ) |
| 59 |
18 55 3 58
|
measssd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑀 ‘ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ) ≤ ( 𝑀 ‘ 𝐵 ) ) |
| 60 |
32 57 20 59
|
esumle |
⊢ ( 𝜑 → Σ* 𝑛 ∈ ℕ ( 𝑀 ‘ ( 𝐵 ∖ ∪ 𝑘 ∈ ( 1 ..^ 𝑛 ) ⦋ 𝑘 / 𝑛 ⦌ 𝐵 ) ) ≤ Σ* 𝑛 ∈ ℕ ( 𝑀 ‘ 𝐵 ) ) |
| 61 |
31 60
|
eqbrtrd |
⊢ ( 𝜑 → ( 𝑀 ‘ ∪ 𝑛 ∈ ℕ 𝐵 ) ≤ Σ* 𝑛 ∈ ℕ ( 𝑀 ‘ 𝐵 ) ) |
| 62 |
8 16 25 26 61
|
xrletrd |
⊢ ( 𝜑 → ( 𝑀 ‘ 𝐴 ) ≤ Σ* 𝑛 ∈ ℕ ( 𝑀 ‘ 𝐵 ) ) |