Step |
Hyp |
Ref |
Expression |
1 |
|
measiun.1 |
|- ( ph -> M e. ( measures ` S ) ) |
2 |
|
measiun.2 |
|- ( ph -> A e. S ) |
3 |
|
measiun.3 |
|- ( ( ph /\ n e. NN ) -> B e. S ) |
4 |
|
measiun.4 |
|- ( ph -> A C_ U_ n e. NN B ) |
5 |
|
iccssxr |
|- ( 0 [,] +oo ) C_ RR* |
6 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( M ` A ) e. ( 0 [,] +oo ) ) |
7 |
1 2 6
|
syl2anc |
|- ( ph -> ( M ` A ) e. ( 0 [,] +oo ) ) |
8 |
5 7
|
sselid |
|- ( ph -> ( M ` A ) e. RR* ) |
9 |
|
measbase |
|- ( M e. ( measures ` S ) -> S e. U. ran sigAlgebra ) |
10 |
1 9
|
syl |
|- ( ph -> S e. U. ran sigAlgebra ) |
11 |
3
|
ralrimiva |
|- ( ph -> A. n e. NN B e. S ) |
12 |
|
sigaclcu2 |
|- ( ( S e. U. ran sigAlgebra /\ A. n e. NN B e. S ) -> U_ n e. NN B e. S ) |
13 |
10 11 12
|
syl2anc |
|- ( ph -> U_ n e. NN B e. S ) |
14 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ U_ n e. NN B e. S ) -> ( M ` U_ n e. NN B ) e. ( 0 [,] +oo ) ) |
15 |
1 13 14
|
syl2anc |
|- ( ph -> ( M ` U_ n e. NN B ) e. ( 0 [,] +oo ) ) |
16 |
5 15
|
sselid |
|- ( ph -> ( M ` U_ n e. NN B ) e. RR* ) |
17 |
|
nnex |
|- NN e. _V |
18 |
1
|
adantr |
|- ( ( ph /\ n e. NN ) -> M e. ( measures ` S ) ) |
19 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ B e. S ) -> ( M ` B ) e. ( 0 [,] +oo ) ) |
20 |
18 3 19
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( M ` B ) e. ( 0 [,] +oo ) ) |
21 |
20
|
ralrimiva |
|- ( ph -> A. n e. NN ( M ` B ) e. ( 0 [,] +oo ) ) |
22 |
|
nfcv |
|- F/_ n NN |
23 |
22
|
esumcl |
|- ( ( NN e. _V /\ A. n e. NN ( M ` B ) e. ( 0 [,] +oo ) ) -> sum* n e. NN ( M ` B ) e. ( 0 [,] +oo ) ) |
24 |
17 21 23
|
sylancr |
|- ( ph -> sum* n e. NN ( M ` B ) e. ( 0 [,] +oo ) ) |
25 |
5 24
|
sselid |
|- ( ph -> sum* n e. NN ( M ` B ) e. RR* ) |
26 |
1 2 13 4
|
measssd |
|- ( ph -> ( M ` A ) <_ ( M ` U_ n e. NN B ) ) |
27 |
|
nfcsb1v |
|- F/_ n [_ k / n ]_ B |
28 |
|
csbeq1a |
|- ( n = k -> B = [_ k / n ]_ B ) |
29 |
|
eqidd |
|- ( ph -> NN = NN ) |
30 |
29
|
orcd |
|- ( ph -> ( NN = NN \/ NN = ( 1 ..^ m ) ) ) |
31 |
27 28 30 1 3
|
measiuns |
|- ( ph -> ( M ` U_ n e. NN B ) = sum* n e. NN ( M ` ( B \ U_ k e. ( 1 ..^ n ) [_ k / n ]_ B ) ) ) |
32 |
17
|
a1i |
|- ( ph -> NN e. _V ) |
33 |
10
|
adantr |
|- ( ( ph /\ n e. NN ) -> S e. U. ran sigAlgebra ) |
34 |
|
nfv |
|- F/ n ph |
35 |
|
nfcv |
|- F/_ n k |
36 |
35
|
nfel1 |
|- F/ n k e. NN |
37 |
27
|
nfel1 |
|- F/ n [_ k / n ]_ B e. S |
38 |
36 37
|
nfim |
|- F/ n ( k e. NN -> [_ k / n ]_ B e. S ) |
39 |
34 38
|
nfim |
|- F/ n ( ph -> ( k e. NN -> [_ k / n ]_ B e. S ) ) |
40 |
|
eleq1w |
|- ( n = k -> ( n e. NN <-> k e. NN ) ) |
41 |
28
|
eleq1d |
|- ( n = k -> ( B e. S <-> [_ k / n ]_ B e. S ) ) |
42 |
40 41
|
imbi12d |
|- ( n = k -> ( ( n e. NN -> B e. S ) <-> ( k e. NN -> [_ k / n ]_ B e. S ) ) ) |
43 |
42
|
imbi2d |
|- ( n = k -> ( ( ph -> ( n e. NN -> B e. S ) ) <-> ( ph -> ( k e. NN -> [_ k / n ]_ B e. S ) ) ) ) |
44 |
3
|
ex |
|- ( ph -> ( n e. NN -> B e. S ) ) |
45 |
39 43 44
|
chvarfv |
|- ( ph -> ( k e. NN -> [_ k / n ]_ B e. S ) ) |
46 |
45
|
ralrimiv |
|- ( ph -> A. k e. NN [_ k / n ]_ B e. S ) |
47 |
|
fzossnn |
|- ( 1 ..^ n ) C_ NN |
48 |
|
ssralv |
|- ( ( 1 ..^ n ) C_ NN -> ( A. k e. NN [_ k / n ]_ B e. S -> A. k e. ( 1 ..^ n ) [_ k / n ]_ B e. S ) ) |
49 |
47 48
|
ax-mp |
|- ( A. k e. NN [_ k / n ]_ B e. S -> A. k e. ( 1 ..^ n ) [_ k / n ]_ B e. S ) |
50 |
|
sigaclfu2 |
|- ( ( S e. U. ran sigAlgebra /\ A. k e. ( 1 ..^ n ) [_ k / n ]_ B e. S ) -> U_ k e. ( 1 ..^ n ) [_ k / n ]_ B e. S ) |
51 |
49 50
|
sylan2 |
|- ( ( S e. U. ran sigAlgebra /\ A. k e. NN [_ k / n ]_ B e. S ) -> U_ k e. ( 1 ..^ n ) [_ k / n ]_ B e. S ) |
52 |
10 46 51
|
syl2anc |
|- ( ph -> U_ k e. ( 1 ..^ n ) [_ k / n ]_ B e. S ) |
53 |
52
|
adantr |
|- ( ( ph /\ n e. NN ) -> U_ k e. ( 1 ..^ n ) [_ k / n ]_ B e. S ) |
54 |
|
difelsiga |
|- ( ( S e. U. ran sigAlgebra /\ B e. S /\ U_ k e. ( 1 ..^ n ) [_ k / n ]_ B e. S ) -> ( B \ U_ k e. ( 1 ..^ n ) [_ k / n ]_ B ) e. S ) |
55 |
33 3 53 54
|
syl3anc |
|- ( ( ph /\ n e. NN ) -> ( B \ U_ k e. ( 1 ..^ n ) [_ k / n ]_ B ) e. S ) |
56 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ ( B \ U_ k e. ( 1 ..^ n ) [_ k / n ]_ B ) e. S ) -> ( M ` ( B \ U_ k e. ( 1 ..^ n ) [_ k / n ]_ B ) ) e. ( 0 [,] +oo ) ) |
57 |
18 55 56
|
syl2anc |
|- ( ( ph /\ n e. NN ) -> ( M ` ( B \ U_ k e. ( 1 ..^ n ) [_ k / n ]_ B ) ) e. ( 0 [,] +oo ) ) |
58 |
|
difssd |
|- ( ( ph /\ n e. NN ) -> ( B \ U_ k e. ( 1 ..^ n ) [_ k / n ]_ B ) C_ B ) |
59 |
18 55 3 58
|
measssd |
|- ( ( ph /\ n e. NN ) -> ( M ` ( B \ U_ k e. ( 1 ..^ n ) [_ k / n ]_ B ) ) <_ ( M ` B ) ) |
60 |
32 57 20 59
|
esumle |
|- ( ph -> sum* n e. NN ( M ` ( B \ U_ k e. ( 1 ..^ n ) [_ k / n ]_ B ) ) <_ sum* n e. NN ( M ` B ) ) |
61 |
31 60
|
eqbrtrd |
|- ( ph -> ( M ` U_ n e. NN B ) <_ sum* n e. NN ( M ` B ) ) |
62 |
8 16 25 26 61
|
xrletrd |
|- ( ph -> ( M ` A ) <_ sum* n e. NN ( M ` B ) ) |