Step |
Hyp |
Ref |
Expression |
1 |
|
measssd.1 |
|- ( ph -> M e. ( measures ` S ) ) |
2 |
|
measssd.2 |
|- ( ph -> A e. S ) |
3 |
|
measssd.3 |
|- ( ph -> B e. S ) |
4 |
|
measssd.4 |
|- ( ph -> A C_ B ) |
5 |
|
measbase |
|- ( M e. ( measures ` S ) -> S e. U. ran sigAlgebra ) |
6 |
1 5
|
syl |
|- ( ph -> S e. U. ran sigAlgebra ) |
7 |
|
difelsiga |
|- ( ( S e. U. ran sigAlgebra /\ B e. S /\ A e. S ) -> ( B \ A ) e. S ) |
8 |
6 3 2 7
|
syl3anc |
|- ( ph -> ( B \ A ) e. S ) |
9 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ ( B \ A ) e. S ) -> ( M ` ( B \ A ) ) e. ( 0 [,] +oo ) ) |
10 |
1 8 9
|
syl2anc |
|- ( ph -> ( M ` ( B \ A ) ) e. ( 0 [,] +oo ) ) |
11 |
|
elxrge0 |
|- ( ( M ` ( B \ A ) ) e. ( 0 [,] +oo ) <-> ( ( M ` ( B \ A ) ) e. RR* /\ 0 <_ ( M ` ( B \ A ) ) ) ) |
12 |
11
|
simprbi |
|- ( ( M ` ( B \ A ) ) e. ( 0 [,] +oo ) -> 0 <_ ( M ` ( B \ A ) ) ) |
13 |
10 12
|
syl |
|- ( ph -> 0 <_ ( M ` ( B \ A ) ) ) |
14 |
|
measvxrge0 |
|- ( ( M e. ( measures ` S ) /\ A e. S ) -> ( M ` A ) e. ( 0 [,] +oo ) ) |
15 |
1 2 14
|
syl2anc |
|- ( ph -> ( M ` A ) e. ( 0 [,] +oo ) ) |
16 |
|
elxrge0 |
|- ( ( M ` A ) e. ( 0 [,] +oo ) <-> ( ( M ` A ) e. RR* /\ 0 <_ ( M ` A ) ) ) |
17 |
16
|
simplbi |
|- ( ( M ` A ) e. ( 0 [,] +oo ) -> ( M ` A ) e. RR* ) |
18 |
15 17
|
syl |
|- ( ph -> ( M ` A ) e. RR* ) |
19 |
11
|
simplbi |
|- ( ( M ` ( B \ A ) ) e. ( 0 [,] +oo ) -> ( M ` ( B \ A ) ) e. RR* ) |
20 |
10 19
|
syl |
|- ( ph -> ( M ` ( B \ A ) ) e. RR* ) |
21 |
|
xraddge02 |
|- ( ( ( M ` A ) e. RR* /\ ( M ` ( B \ A ) ) e. RR* ) -> ( 0 <_ ( M ` ( B \ A ) ) -> ( M ` A ) <_ ( ( M ` A ) +e ( M ` ( B \ A ) ) ) ) ) |
22 |
18 20 21
|
syl2anc |
|- ( ph -> ( 0 <_ ( M ` ( B \ A ) ) -> ( M ` A ) <_ ( ( M ` A ) +e ( M ` ( B \ A ) ) ) ) ) |
23 |
13 22
|
mpd |
|- ( ph -> ( M ` A ) <_ ( ( M ` A ) +e ( M ` ( B \ A ) ) ) ) |
24 |
|
prssi |
|- ( ( A e. S /\ ( B \ A ) e. S ) -> { A , ( B \ A ) } C_ S ) |
25 |
2 8 24
|
syl2anc |
|- ( ph -> { A , ( B \ A ) } C_ S ) |
26 |
|
prex |
|- { A , ( B \ A ) } e. _V |
27 |
26
|
elpw |
|- ( { A , ( B \ A ) } e. ~P S <-> { A , ( B \ A ) } C_ S ) |
28 |
25 27
|
sylibr |
|- ( ph -> { A , ( B \ A ) } e. ~P S ) |
29 |
|
prct |
|- ( ( A e. S /\ ( B \ A ) e. S ) -> { A , ( B \ A ) } ~<_ _om ) |
30 |
2 8 29
|
syl2anc |
|- ( ph -> { A , ( B \ A ) } ~<_ _om ) |
31 |
|
disjdifprg |
|- ( ( A e. S /\ B e. S ) -> Disj_ y e. { ( B \ A ) , A } y ) |
32 |
2 3 31
|
syl2anc |
|- ( ph -> Disj_ y e. { ( B \ A ) , A } y ) |
33 |
|
prcom |
|- { ( B \ A ) , A } = { A , ( B \ A ) } |
34 |
33
|
a1i |
|- ( ph -> { ( B \ A ) , A } = { A , ( B \ A ) } ) |
35 |
34
|
disjeq1d |
|- ( ph -> ( Disj_ y e. { ( B \ A ) , A } y <-> Disj_ y e. { A , ( B \ A ) } y ) ) |
36 |
32 35
|
mpbid |
|- ( ph -> Disj_ y e. { A , ( B \ A ) } y ) |
37 |
|
measvun |
|- ( ( M e. ( measures ` S ) /\ { A , ( B \ A ) } e. ~P S /\ ( { A , ( B \ A ) } ~<_ _om /\ Disj_ y e. { A , ( B \ A ) } y ) ) -> ( M ` U. { A , ( B \ A ) } ) = sum* y e. { A , ( B \ A ) } ( M ` y ) ) |
38 |
1 28 30 36 37
|
syl112anc |
|- ( ph -> ( M ` U. { A , ( B \ A ) } ) = sum* y e. { A , ( B \ A ) } ( M ` y ) ) |
39 |
|
uniprg |
|- ( ( A e. S /\ ( B \ A ) e. S ) -> U. { A , ( B \ A ) } = ( A u. ( B \ A ) ) ) |
40 |
2 8 39
|
syl2anc |
|- ( ph -> U. { A , ( B \ A ) } = ( A u. ( B \ A ) ) ) |
41 |
|
undif |
|- ( A C_ B <-> ( A u. ( B \ A ) ) = B ) |
42 |
4 41
|
sylib |
|- ( ph -> ( A u. ( B \ A ) ) = B ) |
43 |
40 42
|
eqtrd |
|- ( ph -> U. { A , ( B \ A ) } = B ) |
44 |
43
|
fveq2d |
|- ( ph -> ( M ` U. { A , ( B \ A ) } ) = ( M ` B ) ) |
45 |
|
fveq2 |
|- ( y = A -> ( M ` y ) = ( M ` A ) ) |
46 |
45
|
adantl |
|- ( ( ph /\ y = A ) -> ( M ` y ) = ( M ` A ) ) |
47 |
|
fveq2 |
|- ( y = ( B \ A ) -> ( M ` y ) = ( M ` ( B \ A ) ) ) |
48 |
47
|
adantl |
|- ( ( ph /\ y = ( B \ A ) ) -> ( M ` y ) = ( M ` ( B \ A ) ) ) |
49 |
|
eqimss |
|- ( A = ( B \ A ) -> A C_ ( B \ A ) ) |
50 |
|
ssdifeq0 |
|- ( A C_ ( B \ A ) <-> A = (/) ) |
51 |
49 50
|
sylib |
|- ( A = ( B \ A ) -> A = (/) ) |
52 |
51
|
adantl |
|- ( ( ph /\ A = ( B \ A ) ) -> A = (/) ) |
53 |
52
|
fveq2d |
|- ( ( ph /\ A = ( B \ A ) ) -> ( M ` A ) = ( M ` (/) ) ) |
54 |
|
measvnul |
|- ( M e. ( measures ` S ) -> ( M ` (/) ) = 0 ) |
55 |
1 54
|
syl |
|- ( ph -> ( M ` (/) ) = 0 ) |
56 |
55
|
adantr |
|- ( ( ph /\ A = ( B \ A ) ) -> ( M ` (/) ) = 0 ) |
57 |
53 56
|
eqtrd |
|- ( ( ph /\ A = ( B \ A ) ) -> ( M ` A ) = 0 ) |
58 |
57
|
orcd |
|- ( ( ph /\ A = ( B \ A ) ) -> ( ( M ` A ) = 0 \/ ( M ` A ) = +oo ) ) |
59 |
58
|
ex |
|- ( ph -> ( A = ( B \ A ) -> ( ( M ` A ) = 0 \/ ( M ` A ) = +oo ) ) ) |
60 |
46 48 2 8 15 10 59
|
esumpr2 |
|- ( ph -> sum* y e. { A , ( B \ A ) } ( M ` y ) = ( ( M ` A ) +e ( M ` ( B \ A ) ) ) ) |
61 |
38 44 60
|
3eqtr3d |
|- ( ph -> ( M ` B ) = ( ( M ` A ) +e ( M ` ( B \ A ) ) ) ) |
62 |
23 61
|
breqtrrd |
|- ( ph -> ( M ` A ) <_ ( M ` B ) ) |