Metamath Proof Explorer


Theorem measssd

Description: A measure is monotone with respect to set inclusion. (Contributed by Thierry Arnoux, 28-Dec-2016)

Ref Expression
Hypotheses measssd.1 φ M measures S
measssd.2 φ A S
measssd.3 φ B S
measssd.4 φ A B
Assertion measssd φ M A M B

Proof

Step Hyp Ref Expression
1 measssd.1 φ M measures S
2 measssd.2 φ A S
3 measssd.3 φ B S
4 measssd.4 φ A B
5 measbase M measures S S ran sigAlgebra
6 1 5 syl φ S ran sigAlgebra
7 difelsiga S ran sigAlgebra B S A S B A S
8 6 3 2 7 syl3anc φ B A S
9 measvxrge0 M measures S B A S M B A 0 +∞
10 1 8 9 syl2anc φ M B A 0 +∞
11 elxrge0 M B A 0 +∞ M B A * 0 M B A
12 11 simprbi M B A 0 +∞ 0 M B A
13 10 12 syl φ 0 M B A
14 measvxrge0 M measures S A S M A 0 +∞
15 1 2 14 syl2anc φ M A 0 +∞
16 elxrge0 M A 0 +∞ M A * 0 M A
17 16 simplbi M A 0 +∞ M A *
18 15 17 syl φ M A *
19 11 simplbi M B A 0 +∞ M B A *
20 10 19 syl φ M B A *
21 xraddge02 M A * M B A * 0 M B A M A M A + 𝑒 M B A
22 18 20 21 syl2anc φ 0 M B A M A M A + 𝑒 M B A
23 13 22 mpd φ M A M A + 𝑒 M B A
24 prssi A S B A S A B A S
25 2 8 24 syl2anc φ A B A S
26 prex A B A V
27 26 elpw A B A 𝒫 S A B A S
28 25 27 sylibr φ A B A 𝒫 S
29 prct A S B A S A B A ω
30 2 8 29 syl2anc φ A B A ω
31 disjdifprg A S B S Disj y B A A y
32 2 3 31 syl2anc φ Disj y B A A y
33 prcom B A A = A B A
34 33 a1i φ B A A = A B A
35 34 disjeq1d φ Disj y B A A y Disj y A B A y
36 32 35 mpbid φ Disj y A B A y
37 measvun M measures S A B A 𝒫 S A B A ω Disj y A B A y M A B A = * y A B A M y
38 1 28 30 36 37 syl112anc φ M A B A = * y A B A M y
39 uniprg A S B A S A B A = A B A
40 2 8 39 syl2anc φ A B A = A B A
41 undif A B A B A = B
42 4 41 sylib φ A B A = B
43 40 42 eqtrd φ A B A = B
44 43 fveq2d φ M A B A = M B
45 fveq2 y = A M y = M A
46 45 adantl φ y = A M y = M A
47 fveq2 y = B A M y = M B A
48 47 adantl φ y = B A M y = M B A
49 eqimss A = B A A B A
50 ssdifeq0 A B A A =
51 49 50 sylib A = B A A =
52 51 adantl φ A = B A A =
53 52 fveq2d φ A = B A M A = M
54 measvnul M measures S M = 0
55 1 54 syl φ M = 0
56 55 adantr φ A = B A M = 0
57 53 56 eqtrd φ A = B A M A = 0
58 57 orcd φ A = B A M A = 0 M A = +∞
59 58 ex φ A = B A M A = 0 M A = +∞
60 46 48 2 8 15 10 59 esumpr2 φ * y A B A M y = M A + 𝑒 M B A
61 38 44 60 3eqtr3d φ M B = M A + 𝑒 M B A
62 23 61 breqtrrd φ M A M B