Metamath Proof Explorer


Definition df-ae

Description: Define 'almost everywhere' with regard to a measure M . A property holds almost everywhere if the measure of the set where it does not hold has measure zero. (Contributed by Thierry Arnoux, 20-Oct-2017)

Ref Expression
Assertion df-ae ae=am|mdomma=0

Detailed syntax breakdown

Step Hyp Ref Expression
0 cae classae
1 va setvara
2 vm setvarm
3 2 cv setvarm
4 3 cdm classdomm
5 4 cuni classdomm
6 1 cv setvara
7 5 6 cdif classdomma
8 7 3 cfv classmdomma
9 cc0 class0
10 8 9 wceq wffmdomma=0
11 10 1 2 copab classam|mdomma=0
12 0 11 wceq wffae=am|mdomma=0