Metamath Proof Explorer


Theorem brfi1ind

Description: Properties of a binary relation with a finite first component, proven by finite induction on the size of the first component. (Contributed by Alexander van der Vekens, 7-Jan-2018) (Revised by AV, 28-Mar-2021)

Ref Expression
Hypotheses brfi1ind.r
|- Rel G
brfi1ind.f
|- F e. _V
brfi1ind.1
|- ( ( v = V /\ e = E ) -> ( ps <-> ph ) )
brfi1ind.2
|- ( ( v = w /\ e = f ) -> ( ps <-> th ) )
brfi1ind.3
|- ( ( v G e /\ n e. v ) -> ( v \ { n } ) G F )
brfi1ind.4
|- ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) )
brfi1ind.base
|- ( ( v G e /\ ( # ` v ) = 0 ) -> ps )
brfi1ind.step
|- ( ( ( ( y + 1 ) e. NN0 /\ ( v G e /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps )
Assertion brfi1ind
|- ( ( V G E /\ V e. Fin ) -> ph )

Proof

Step Hyp Ref Expression
1 brfi1ind.r
 |-  Rel G
2 brfi1ind.f
 |-  F e. _V
3 brfi1ind.1
 |-  ( ( v = V /\ e = E ) -> ( ps <-> ph ) )
4 brfi1ind.2
 |-  ( ( v = w /\ e = f ) -> ( ps <-> th ) )
5 brfi1ind.3
 |-  ( ( v G e /\ n e. v ) -> ( v \ { n } ) G F )
6 brfi1ind.4
 |-  ( ( w = ( v \ { n } ) /\ f = F ) -> ( th <-> ch ) )
7 brfi1ind.base
 |-  ( ( v G e /\ ( # ` v ) = 0 ) -> ps )
8 brfi1ind.step
 |-  ( ( ( ( y + 1 ) e. NN0 /\ ( v G e /\ ( # ` v ) = ( y + 1 ) /\ n e. v ) ) /\ ch ) -> ps )
9 hashge0
 |-  ( V e. Fin -> 0 <_ ( # ` V ) )
10 9 adantl
 |-  ( ( V G E /\ V e. Fin ) -> 0 <_ ( # ` V ) )
11 0nn0
 |-  0 e. NN0
12 1 2 11 3 4 5 6 7 8 brfi1uzind
 |-  ( ( V G E /\ V e. Fin /\ 0 <_ ( # ` V ) ) -> ph )
13 10 12 mpd3an3
 |-  ( ( V G E /\ V e. Fin ) -> ph )