Metamath Proof Explorer


Theorem brin2

Description: Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021)

Ref Expression
Assertion brin2
|- ( ( A e. V /\ B e. W ) -> ( A ( R i^i S ) B <-> A ( R |X. S ) <. B , B >. ) )

Proof

Step Hyp Ref Expression
1 brin
 |-  ( A ( R i^i S ) B <-> ( A R B /\ A S B ) )
2 brxrn
 |-  ( ( A e. V /\ B e. W /\ B e. W ) -> ( A ( R |X. S ) <. B , B >. <-> ( A R B /\ A S B ) ) )
3 2 3anidm23
 |-  ( ( A e. V /\ B e. W ) -> ( A ( R |X. S ) <. B , B >. <-> ( A R B /\ A S B ) ) )
4 1 3 bitr4id
 |-  ( ( A e. V /\ B e. W ) -> ( A ( R i^i S ) B <-> A ( R |X. S ) <. B , B >. ) )