Description: Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021) (Avoid depending on this detail.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | brin3 | |- ( ( A e. V /\ B e. W ) -> ( A ( R i^i S ) B <-> A ( R |X. S ) { { B } } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brin2 | |- ( ( A e. V /\ B e. W ) -> ( A ( R i^i S ) B <-> A ( R |X. S ) <. B , B >. ) ) |
|
| 2 | opidg | |- ( B e. W -> <. B , B >. = { { B } } ) |
|
| 3 | 2 | adantl | |- ( ( A e. V /\ B e. W ) -> <. B , B >. = { { B } } ) |
| 4 | 3 | breq2d | |- ( ( A e. V /\ B e. W ) -> ( A ( R |X. S ) <. B , B >. <-> A ( R |X. S ) { { B } } ) ) |
| 5 | 1 4 | bitrd | |- ( ( A e. V /\ B e. W ) -> ( A ( R i^i S ) B <-> A ( R |X. S ) { { B } } ) ) |