Metamath Proof Explorer


Theorem brin3

Description: Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021) (Avoid depending on this detail.)

Ref Expression
Assertion brin3
|- ( ( A e. V /\ B e. W ) -> ( A ( R i^i S ) B <-> A ( R |X. S ) { { B } } ) )

Proof

Step Hyp Ref Expression
1 brin2
 |-  ( ( A e. V /\ B e. W ) -> ( A ( R i^i S ) B <-> A ( R |X. S ) <. B , B >. ) )
2 opidg
 |-  ( B e. W -> <. B , B >. = { { B } } )
3 2 adantl
 |-  ( ( A e. V /\ B e. W ) -> <. B , B >. = { { B } } )
4 3 breq2d
 |-  ( ( A e. V /\ B e. W ) -> ( A ( R |X. S ) <. B , B >. <-> A ( R |X. S ) { { B } } ) )
5 1 4 bitrd
 |-  ( ( A e. V /\ B e. W ) -> ( A ( R i^i S ) B <-> A ( R |X. S ) { { B } } ) )