Metamath Proof Explorer


Theorem brin3

Description: Binary relation on an intersection is a special case of binary relation on range Cartesian product. (Contributed by Peter Mazsa, 21-Aug-2021) (Avoid depending on this detail.)

Ref Expression
Assertion brin3 ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( 𝑅𝑆 ) 𝐵𝐴 ( 𝑅𝑆 ) { { 𝐵 } } ) )

Proof

Step Hyp Ref Expression
1 brin2 ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( 𝑅𝑆 ) 𝐵𝐴 ( 𝑅𝑆 ) ⟨ 𝐵 , 𝐵 ⟩ ) )
2 opidg ( 𝐵𝑊 → ⟨ 𝐵 , 𝐵 ⟩ = { { 𝐵 } } )
3 2 adantl ( ( 𝐴𝑉𝐵𝑊 ) → ⟨ 𝐵 , 𝐵 ⟩ = { { 𝐵 } } )
4 3 breq2d ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( 𝑅𝑆 ) ⟨ 𝐵 , 𝐵 ⟩ ↔ 𝐴 ( 𝑅𝑆 ) { { 𝐵 } } ) )
5 1 4 bitrd ( ( 𝐴𝑉𝐵𝑊 ) → ( 𝐴 ( 𝑅𝑆 ) 𝐵𝐴 ( 𝑅𝑆 ) { { 𝐵 } } ) )