Metamath Proof Explorer


Theorem btwncolinear5

Description: Betweenness implies colinearity. (Contributed by Scott Fenton, 15-Oct-2013) (Revised by Mario Carneiro, 19-Apr-2014)

Ref Expression
Assertion btwncolinear5
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> C Colinear <. A , B >. ) )

Proof

Step Hyp Ref Expression
1 btwncolinear1
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> A Colinear <. B , C >. ) )
2 colinearperm4
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> C Colinear <. A , B >. ) )
3 1 2 sylibd
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> C Colinear <. A , B >. ) )