Metamath Proof Explorer


Theorem btwncolinear1

Description: Betweenness implies colinearity. (Contributed by Scott Fenton, 7-Oct-2013)

Ref Expression
Assertion btwncolinear1
|- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> A Colinear <. B , C >. ) )

Proof

Step Hyp Ref Expression
1 3mix3
 |-  ( C Btwn <. A , B >. -> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) )
2 brcolinear
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) )
3 1 2 syl5ibr
 |-  ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> A Colinear <. B , C >. ) )