Description: Betweenness implies colinearity. (Contributed by Scott Fenton, 7-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | btwncolinear1 | |- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> A Colinear <. B , C >. ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mix3 | |- ( C Btwn <. A , B >. -> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) |
|
2 | brcolinear | |- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( A Colinear <. B , C >. <-> ( A Btwn <. B , C >. \/ B Btwn <. C , A >. \/ C Btwn <. A , B >. ) ) ) |
|
3 | 1 2 | syl5ibr | |- ( ( N e. NN /\ ( A e. ( EE ` N ) /\ B e. ( EE ` N ) /\ C e. ( EE ` N ) ) ) -> ( C Btwn <. A , B >. -> A Colinear <. B , C >. ) ) |