Description: Betweenness implies colinearity. (Contributed by Scott Fenton, 7-Oct-2013)
Ref | Expression | ||
---|---|---|---|
Assertion | btwncolinear1 | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn 〈 𝐴 , 𝐵 〉 → 𝐴 Colinear 〈 𝐵 , 𝐶 〉 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | 3mix3 | ⊢ ( 𝐶 Btwn 〈 𝐴 , 𝐵 〉 → ( 𝐴 Btwn 〈 𝐵 , 𝐶 〉 ∨ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ∨ 𝐶 Btwn 〈 𝐴 , 𝐵 〉 ) ) | |
2 | brcolinear | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 Colinear 〈 𝐵 , 𝐶 〉 ↔ ( 𝐴 Btwn 〈 𝐵 , 𝐶 〉 ∨ 𝐵 Btwn 〈 𝐶 , 𝐴 〉 ∨ 𝐶 Btwn 〈 𝐴 , 𝐵 〉 ) ) ) | |
3 | 1 2 | syl5ibr | ⊢ ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐶 Btwn 〈 𝐴 , 𝐵 〉 → 𝐴 Colinear 〈 𝐵 , 𝐶 〉 ) ) |