Metamath Proof Explorer


Theorem brcolinear

Description: The binary relation form of the colinearity predicate. (Contributed by Scott Fenton, 5-Oct-2013)

Ref Expression
Assertion brcolinear ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ↔ ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) )

Proof

Step Hyp Ref Expression
1 brcolinear2 ( ( 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
2 1 3adant1 ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) → ( 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
3 2 adantl ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ↔ ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
4 simpr ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) → ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) )
5 4 rexlimivw ( ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) → ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) )
6 fveq2 ( 𝑛 = 𝑁 → ( 𝔼 ‘ 𝑛 ) = ( 𝔼 ‘ 𝑁 ) )
7 6 eleq2d ( 𝑛 = 𝑁 → ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ) )
8 6 eleq2d ( 𝑛 = 𝑁 → ( 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ) )
9 6 eleq2d ( 𝑛 = 𝑁 → ( 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) )
10 7 8 9 3anbi123d ( 𝑛 = 𝑁 → ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ) ↔ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) )
11 10 anbi1d ( 𝑛 = 𝑁 → ( ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
12 11 rspcev ( ( 𝑁 ∈ ℕ ∧ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ∧ ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) ) → ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) )
13 12 expr ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) → ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) ) )
14 5 13 impbid2 ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( ∃ 𝑛 ∈ ℕ ( ( 𝐴 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) ↔ ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) )
15 3 14 bitrd ( ( 𝑁 ∈ ℕ ∧ ( 𝐴 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐵 ∈ ( 𝔼 ‘ 𝑁 ) ∧ 𝐶 ∈ ( 𝔼 ‘ 𝑁 ) ) ) → ( 𝐴 Colinear ⟨ 𝐵 , 𝐶 ⟩ ↔ ( 𝐴 Btwn ⟨ 𝐵 , 𝐶 ⟩ ∨ 𝐵 Btwn ⟨ 𝐶 , 𝐴 ⟩ ∨ 𝐶 Btwn ⟨ 𝐴 , 𝐵 ⟩ ) ) )