Step |
Hyp |
Ref |
Expression |
1 |
|
colinrel |
⊢ Rel Colinear |
2 |
1
|
brrelex1i |
⊢ ( 𝑃 Colinear ⟨ 𝑄 , 𝑅 ⟩ → 𝑃 ∈ V ) |
3 |
2
|
a1i |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑃 Colinear ⟨ 𝑄 , 𝑅 ⟩ → 𝑃 ∈ V ) ) |
4 |
|
elex |
⊢ ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) → 𝑃 ∈ V ) |
5 |
4
|
3ad2ant1 |
⊢ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) → 𝑃 ∈ V ) |
6 |
5
|
adantr |
⊢ ( ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑃 Btwn ⟨ 𝑄 , 𝑅 ⟩ ∨ 𝑄 Btwn ⟨ 𝑅 , 𝑃 ⟩ ∨ 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ) ) → 𝑃 ∈ V ) |
7 |
6
|
rexlimivw |
⊢ ( ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑃 Btwn ⟨ 𝑄 , 𝑅 ⟩ ∨ 𝑄 Btwn ⟨ 𝑅 , 𝑃 ⟩ ∨ 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ) ) → 𝑃 ∈ V ) |
8 |
7
|
a1i |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑃 Btwn ⟨ 𝑄 , 𝑅 ⟩ ∨ 𝑄 Btwn ⟨ 𝑅 , 𝑃 ⟩ ∨ 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ) ) → 𝑃 ∈ V ) ) |
9 |
|
df-br |
⊢ ( 𝑃 Colinear ⟨ 𝑄 , 𝑅 ⟩ ↔ ⟨ 𝑃 , ⟨ 𝑄 , 𝑅 ⟩ ⟩ ∈ Colinear ) |
10 |
|
df-colinear |
⊢ Colinear = ◡ { ⟨ ⟨ 𝑞 , 𝑟 ⟩ , 𝑝 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑞 , 𝑟 ⟩ ∨ 𝑞 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑞 ⟩ ) ) } |
11 |
10
|
eleq2i |
⊢ ( ⟨ 𝑃 , ⟨ 𝑄 , 𝑅 ⟩ ⟩ ∈ Colinear ↔ ⟨ 𝑃 , ⟨ 𝑄 , 𝑅 ⟩ ⟩ ∈ ◡ { ⟨ ⟨ 𝑞 , 𝑟 ⟩ , 𝑝 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑞 , 𝑟 ⟩ ∨ 𝑞 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑞 ⟩ ) ) } ) |
12 |
9 11
|
bitri |
⊢ ( 𝑃 Colinear ⟨ 𝑄 , 𝑅 ⟩ ↔ ⟨ 𝑃 , ⟨ 𝑄 , 𝑅 ⟩ ⟩ ∈ ◡ { ⟨ ⟨ 𝑞 , 𝑟 ⟩ , 𝑝 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑞 , 𝑟 ⟩ ∨ 𝑞 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑞 ⟩ ) ) } ) |
13 |
|
opex |
⊢ ⟨ 𝑄 , 𝑅 ⟩ ∈ V |
14 |
|
opelcnvg |
⊢ ( ( 𝑃 ∈ V ∧ ⟨ 𝑄 , 𝑅 ⟩ ∈ V ) → ( ⟨ 𝑃 , ⟨ 𝑄 , 𝑅 ⟩ ⟩ ∈ ◡ { ⟨ ⟨ 𝑞 , 𝑟 ⟩ , 𝑝 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑞 , 𝑟 ⟩ ∨ 𝑞 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑞 ⟩ ) ) } ↔ ⟨ ⟨ 𝑄 , 𝑅 ⟩ , 𝑃 ⟩ ∈ { ⟨ ⟨ 𝑞 , 𝑟 ⟩ , 𝑝 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑞 , 𝑟 ⟩ ∨ 𝑞 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑞 ⟩ ) ) } ) ) |
15 |
13 14
|
mpan2 |
⊢ ( 𝑃 ∈ V → ( ⟨ 𝑃 , ⟨ 𝑄 , 𝑅 ⟩ ⟩ ∈ ◡ { ⟨ ⟨ 𝑞 , 𝑟 ⟩ , 𝑝 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑞 , 𝑟 ⟩ ∨ 𝑞 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑞 ⟩ ) ) } ↔ ⟨ ⟨ 𝑄 , 𝑅 ⟩ , 𝑃 ⟩ ∈ { ⟨ ⟨ 𝑞 , 𝑟 ⟩ , 𝑝 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑞 , 𝑟 ⟩ ∨ 𝑞 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑞 ⟩ ) ) } ) ) |
16 |
15
|
3ad2ant3 |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ 𝑃 ∈ V ) → ( ⟨ 𝑃 , ⟨ 𝑄 , 𝑅 ⟩ ⟩ ∈ ◡ { ⟨ ⟨ 𝑞 , 𝑟 ⟩ , 𝑝 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑞 , 𝑟 ⟩ ∨ 𝑞 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑞 ⟩ ) ) } ↔ ⟨ ⟨ 𝑄 , 𝑅 ⟩ , 𝑃 ⟩ ∈ { ⟨ ⟨ 𝑞 , 𝑟 ⟩ , 𝑝 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑞 , 𝑟 ⟩ ∨ 𝑞 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑞 ⟩ ) ) } ) ) |
17 |
12 16
|
bitrid |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ 𝑃 ∈ V ) → ( 𝑃 Colinear ⟨ 𝑄 , 𝑅 ⟩ ↔ ⟨ ⟨ 𝑄 , 𝑅 ⟩ , 𝑃 ⟩ ∈ { ⟨ ⟨ 𝑞 , 𝑟 ⟩ , 𝑝 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑞 , 𝑟 ⟩ ∨ 𝑞 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑞 ⟩ ) ) } ) ) |
18 |
|
eleq1 |
⊢ ( 𝑞 = 𝑄 → ( 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ) ) |
19 |
18
|
3anbi2d |
⊢ ( 𝑞 = 𝑄 → ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ↔ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ) |
20 |
|
opeq1 |
⊢ ( 𝑞 = 𝑄 → ⟨ 𝑞 , 𝑟 ⟩ = ⟨ 𝑄 , 𝑟 ⟩ ) |
21 |
20
|
breq2d |
⊢ ( 𝑞 = 𝑄 → ( 𝑝 Btwn ⟨ 𝑞 , 𝑟 ⟩ ↔ 𝑝 Btwn ⟨ 𝑄 , 𝑟 ⟩ ) ) |
22 |
|
breq1 |
⊢ ( 𝑞 = 𝑄 → ( 𝑞 Btwn ⟨ 𝑟 , 𝑝 ⟩ ↔ 𝑄 Btwn ⟨ 𝑟 , 𝑝 ⟩ ) ) |
23 |
|
opeq2 |
⊢ ( 𝑞 = 𝑄 → ⟨ 𝑝 , 𝑞 ⟩ = ⟨ 𝑝 , 𝑄 ⟩ ) |
24 |
23
|
breq2d |
⊢ ( 𝑞 = 𝑄 → ( 𝑟 Btwn ⟨ 𝑝 , 𝑞 ⟩ ↔ 𝑟 Btwn ⟨ 𝑝 , 𝑄 ⟩ ) ) |
25 |
21 22 24
|
3orbi123d |
⊢ ( 𝑞 = 𝑄 → ( ( 𝑝 Btwn ⟨ 𝑞 , 𝑟 ⟩ ∨ 𝑞 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑞 ⟩ ) ↔ ( 𝑝 Btwn ⟨ 𝑄 , 𝑟 ⟩ ∨ 𝑄 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑄 ⟩ ) ) ) |
26 |
19 25
|
anbi12d |
⊢ ( 𝑞 = 𝑄 → ( ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑞 , 𝑟 ⟩ ∨ 𝑞 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑞 ⟩ ) ) ↔ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑄 , 𝑟 ⟩ ∨ 𝑄 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑄 ⟩ ) ) ) ) |
27 |
26
|
rexbidv |
⊢ ( 𝑞 = 𝑄 → ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑞 , 𝑟 ⟩ ∨ 𝑞 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑞 ⟩ ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑄 , 𝑟 ⟩ ∨ 𝑄 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑄 ⟩ ) ) ) ) |
28 |
|
eleq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ) |
29 |
28
|
3anbi3d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ↔ ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ) |
30 |
|
opeq2 |
⊢ ( 𝑟 = 𝑅 → ⟨ 𝑄 , 𝑟 ⟩ = ⟨ 𝑄 , 𝑅 ⟩ ) |
31 |
30
|
breq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑝 Btwn ⟨ 𝑄 , 𝑟 ⟩ ↔ 𝑝 Btwn ⟨ 𝑄 , 𝑅 ⟩ ) ) |
32 |
|
opeq1 |
⊢ ( 𝑟 = 𝑅 → ⟨ 𝑟 , 𝑝 ⟩ = ⟨ 𝑅 , 𝑝 ⟩ ) |
33 |
32
|
breq2d |
⊢ ( 𝑟 = 𝑅 → ( 𝑄 Btwn ⟨ 𝑟 , 𝑝 ⟩ ↔ 𝑄 Btwn ⟨ 𝑅 , 𝑝 ⟩ ) ) |
34 |
|
breq1 |
⊢ ( 𝑟 = 𝑅 → ( 𝑟 Btwn ⟨ 𝑝 , 𝑄 ⟩ ↔ 𝑅 Btwn ⟨ 𝑝 , 𝑄 ⟩ ) ) |
35 |
31 33 34
|
3orbi123d |
⊢ ( 𝑟 = 𝑅 → ( ( 𝑝 Btwn ⟨ 𝑄 , 𝑟 ⟩ ∨ 𝑄 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑄 ⟩ ) ↔ ( 𝑝 Btwn ⟨ 𝑄 , 𝑅 ⟩ ∨ 𝑄 Btwn ⟨ 𝑅 , 𝑝 ⟩ ∨ 𝑅 Btwn ⟨ 𝑝 , 𝑄 ⟩ ) ) ) |
36 |
29 35
|
anbi12d |
⊢ ( 𝑟 = 𝑅 → ( ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑄 , 𝑟 ⟩ ∨ 𝑄 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑄 ⟩ ) ) ↔ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑄 , 𝑅 ⟩ ∨ 𝑄 Btwn ⟨ 𝑅 , 𝑝 ⟩ ∨ 𝑅 Btwn ⟨ 𝑝 , 𝑄 ⟩ ) ) ) ) |
37 |
36
|
rexbidv |
⊢ ( 𝑟 = 𝑅 → ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑄 , 𝑟 ⟩ ∨ 𝑄 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑄 ⟩ ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑄 , 𝑅 ⟩ ∨ 𝑄 Btwn ⟨ 𝑅 , 𝑝 ⟩ ∨ 𝑅 Btwn ⟨ 𝑝 , 𝑄 ⟩ ) ) ) ) |
38 |
|
eleq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ↔ 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ) ) |
39 |
38
|
3anbi1d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ↔ ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ) ) |
40 |
|
breq1 |
⊢ ( 𝑝 = 𝑃 → ( 𝑝 Btwn ⟨ 𝑄 , 𝑅 ⟩ ↔ 𝑃 Btwn ⟨ 𝑄 , 𝑅 ⟩ ) ) |
41 |
|
opeq2 |
⊢ ( 𝑝 = 𝑃 → ⟨ 𝑅 , 𝑝 ⟩ = ⟨ 𝑅 , 𝑃 ⟩ ) |
42 |
41
|
breq2d |
⊢ ( 𝑝 = 𝑃 → ( 𝑄 Btwn ⟨ 𝑅 , 𝑝 ⟩ ↔ 𝑄 Btwn ⟨ 𝑅 , 𝑃 ⟩ ) ) |
43 |
|
opeq1 |
⊢ ( 𝑝 = 𝑃 → ⟨ 𝑝 , 𝑄 ⟩ = ⟨ 𝑃 , 𝑄 ⟩ ) |
44 |
43
|
breq2d |
⊢ ( 𝑝 = 𝑃 → ( 𝑅 Btwn ⟨ 𝑝 , 𝑄 ⟩ ↔ 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ) ) |
45 |
40 42 44
|
3orbi123d |
⊢ ( 𝑝 = 𝑃 → ( ( 𝑝 Btwn ⟨ 𝑄 , 𝑅 ⟩ ∨ 𝑄 Btwn ⟨ 𝑅 , 𝑝 ⟩ ∨ 𝑅 Btwn ⟨ 𝑝 , 𝑄 ⟩ ) ↔ ( 𝑃 Btwn ⟨ 𝑄 , 𝑅 ⟩ ∨ 𝑄 Btwn ⟨ 𝑅 , 𝑃 ⟩ ∨ 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ) ) ) |
46 |
39 45
|
anbi12d |
⊢ ( 𝑝 = 𝑃 → ( ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑄 , 𝑅 ⟩ ∨ 𝑄 Btwn ⟨ 𝑅 , 𝑝 ⟩ ∨ 𝑅 Btwn ⟨ 𝑝 , 𝑄 ⟩ ) ) ↔ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑃 Btwn ⟨ 𝑄 , 𝑅 ⟩ ∨ 𝑄 Btwn ⟨ 𝑅 , 𝑃 ⟩ ∨ 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ) ) ) ) |
47 |
46
|
rexbidv |
⊢ ( 𝑝 = 𝑃 → ( ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑄 , 𝑅 ⟩ ∨ 𝑄 Btwn ⟨ 𝑅 , 𝑝 ⟩ ∨ 𝑅 Btwn ⟨ 𝑝 , 𝑄 ⟩ ) ) ↔ ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑃 Btwn ⟨ 𝑄 , 𝑅 ⟩ ∨ 𝑄 Btwn ⟨ 𝑅 , 𝑃 ⟩ ∨ 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ) ) ) ) |
48 |
27 37 47
|
eloprabg |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ 𝑃 ∈ V ) → ( ⟨ ⟨ 𝑄 , 𝑅 ⟩ , 𝑃 ⟩ ∈ { ⟨ ⟨ 𝑞 , 𝑟 ⟩ , 𝑝 ⟩ ∣ ∃ 𝑛 ∈ ℕ ( ( 𝑝 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑞 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑟 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑝 Btwn ⟨ 𝑞 , 𝑟 ⟩ ∨ 𝑞 Btwn ⟨ 𝑟 , 𝑝 ⟩ ∨ 𝑟 Btwn ⟨ 𝑝 , 𝑞 ⟩ ) ) } ↔ ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑃 Btwn ⟨ 𝑄 , 𝑅 ⟩ ∨ 𝑄 Btwn ⟨ 𝑅 , 𝑃 ⟩ ∨ 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ) ) ) ) |
49 |
17 48
|
bitrd |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ∧ 𝑃 ∈ V ) → ( 𝑃 Colinear ⟨ 𝑄 , 𝑅 ⟩ ↔ ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑃 Btwn ⟨ 𝑄 , 𝑅 ⟩ ∨ 𝑄 Btwn ⟨ 𝑅 , 𝑃 ⟩ ∨ 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ) ) ) ) |
50 |
49
|
3expia |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑃 ∈ V → ( 𝑃 Colinear ⟨ 𝑄 , 𝑅 ⟩ ↔ ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑃 Btwn ⟨ 𝑄 , 𝑅 ⟩ ∨ 𝑄 Btwn ⟨ 𝑅 , 𝑃 ⟩ ∨ 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ) ) ) ) ) |
51 |
3 8 50
|
pm5.21ndd |
⊢ ( ( 𝑄 ∈ 𝑉 ∧ 𝑅 ∈ 𝑊 ) → ( 𝑃 Colinear ⟨ 𝑄 , 𝑅 ⟩ ↔ ∃ 𝑛 ∈ ℕ ( ( 𝑃 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑄 ∈ ( 𝔼 ‘ 𝑛 ) ∧ 𝑅 ∈ ( 𝔼 ‘ 𝑛 ) ) ∧ ( 𝑃 Btwn ⟨ 𝑄 , 𝑅 ⟩ ∨ 𝑄 Btwn ⟨ 𝑅 , 𝑃 ⟩ ∨ 𝑅 Btwn ⟨ 𝑃 , 𝑄 ⟩ ) ) ) ) |